首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.  相似文献   

2.
This is a brief review of current evidence for the relationships between physical activity and exercise and the brain and cognition throughout the life span in non-pathological populations. We focus on the effects of both aerobic and resistance training and provide a brief overview of potential neurobiological mechanisms derived from non-human animal models. Whereas research has focused primarily on the benefits of aerobic exercise in youth and young adult populations, there is growing evidence that both aerobic and resistance training are important for maintaining cognitive and brain health in old age. Finally, in these contexts, we point out gaps in the literature and future directions that will help advance the field of exercise neuroscience, including more studies that explicitly examine the effect of exercise type and intensity on cognition, the brain, and clinically significant outcomes. There is also a need for human neuroimaging studies to adopt a more unified multi-modal framework and for greater interaction between human and animal models of exercise effects on brain and cognition across the life span.  相似文献   

3.
Voluntary physical activity and exercise training can favorably influence brain plasticity by facilitating neurogenerative, neuroadaptive, and neuroprotective processes. At least some of the processes are mediated by neurotrophic factors. Motor skill training and regular exercise enhance executive functions of cognition and some types of learning, including motor learning in the spinal cord. These adaptations in the central nervous system have implications for the prevention and treatment of obesity, cancer, depression, the decline in cognition associated with aging, and neurological disorders such as Parkinson's disease, Alzheimer's dementia, ischemic stroke, and head and spinal cord injury. Chronic voluntary physical activity also attenuates neural responses to stress in brain circuits responsible for regulating peripheral sympathetic activity, suggesting constraint on sympathetic responses to stress that could plausibly contribute to reductions in clinical disorders such as hypertension, heart failure, oxidative stress, and suppression of immunity. Mechanisms explaining these adaptations are not as yet known, but metabolic and neurochemical pathways among skeletal muscle, the spinal cord, and the brain offer plausible, testable mechanisms that might help explain effects of physical activity and exercise on the central nervous system.  相似文献   

4.
高强度间歇训练(high-intensity interval training,HIIT)己被证明是一种省时、高效的运动策略.与传统的中、低强度有氧运动相比,它可以提供类似甚至更好的健康效益.近年来一些研究表明,HIIT可作为一种有前途的运动康复疗法来改善肥胖、糖尿病、中风、痴呆等疾病引起的认知功能受损.因此,本文综...  相似文献   

5.
The hippocampus is a brain structure known to play a central role in cognitive function (namely learning and memory) as well as mood regulation and affective behaviors due in part to its ability to undergo structural and functional changes in response to intrinsic and extrinsic stimuli. While structural changes are achieved through modulation of hippocampal neurogenesis as well as alterations in dendritic morphology and spine remodeling, functional (i.e., synaptic) changes can be noted through the strengthening (i.e., long-term potentiation) or weakening (i.e., long-term depression) of the synapses. While age, hormone homeostasis, and levels of physical activity are some of the factors known to module these forms of hippocampal plasticity, the exact mechanisms through which these factors interact with each other at a given moment in time are not completely understood. It is well known that hormonal levels vary throughout the lifespan of an individual and it is also known that physical exercise can impact hormonal homeostasis. Thus, it is reasonable to speculate that hormone modulation might be one of the various mechanisms through which physical exercise differently impacts hippocampal plasticity throughout distinct periods of an individual's life. The present review summarizes the potential relationship between physical exercise and different types of hormones (namely sex, metabolic, and stress hormones) and how this relationship may mediate the effects of physical activity during three distinct life periods, adolescence, adulthood, and senescence. Overall, the vast majority of studies support a beneficial role of exercise in maintaining hippocampal hormonal levels and consequently, hippocampal plasticity, cognition, and mood regulation.  相似文献   

6.
Physical activity has been recognized as an important protective factor reducing disability and mortality and therefore it is focus of many health promotion activities at all ages. More recently a growing body of literature is focusing whether physical activity could also have a positive impact on brain aging with exploring healthy brain aging as well as on cognitive impairment and dementia. An increasing number of prospective studies and randomized controlled trials involving humans take place both with older adults with normal cognition as well as with mild cognitive impairment or dementia. However, the body of evidence is still sparse and many methodological issues make comparisons across studies challenging. Increasingly research into underlying mechanisms in relation to physical activity and brain aging identify biomarker candidates with especially neuroimaging measurements being more used in trials with humans. Whilst the evidence base is slowly growing more detailed research is needed to address methodological issues to finally achieve clinical relevance. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease.  相似文献   

7.
Physical exercise not only helps to improve physical health but can also enhance brain development and cognition. Recent reports on parental (both maternal and paternal) effects raise the possibility that parental exercise may provide benefits to offspring through intergenerational inheritance. However, the general magnitude and consistency of parental exercise effects on offspring is still controversial. Additionally, empirical research has long overlooked an important aspect of exercise: its effects on variability in neurodevelopmental and cognitive traits. Here, we compiled data from 52 studies involving 4786 rodents (412 effect sizes) to quantify the intergenerational transmission of exercise effects on brain and cognition. Using a multilevel meta-analytic approach, we found that, overall, parental exercise showed a tendency for increasing their offspring's brain structure by 12.7% (albeit statistically non-significant) probably via significantly facilitating neurogenesis (16.5%). Such changes in neural anatomy go in hand with a significant 20.8% improvement in neurobehaviour (improved learning and memory, and reduced anxiety). Moreover, we found parental exercise significantly reduces inter-individual differences (i.e. reduced variance in the treatment group) in progeny's neurobehaviour by 10.2% (coefficient of variation ratio, lnCVR), suggesting the existence of an individual by intervention interaction. The positive effects of exercise are modulated by several covariates (i.e. moderators), such as the exercised parent's sex, offspring's sex, and age, mode of exercise, and exercise timing. In particular, parental forced exercise is more efficient than voluntary exercise at significantly improving offspring neurobehaviour (26.0%) and reducing its variability (14.2%). We observed larger effects when parental exercise started before pregnancy. However, exercising only during pregnancy also had positive effects. Mechanistically, exercise significantly upregulated brain-derived neurotrophic factor (BDNF) by 28.9%, vascular endothelial growth factor (VEGF) by 35.8%, and significantly decreased hippocampal DNA methylation by 3.5%, suggesting that brain growth factor cascades and epigenetic modifications can moderate the transmission of parental exercise effects. Collectively, by coupling mean with variance effects, our analyses draw a more integrated picture of the benefits that parental exercise has on offspring: not only does it improve offspring brain development and cognitive performance, but it also reduces inter-individual differences in cognition-related traits. We advocate that meta-analysis of variation together with the mean of a trait provides novel insights for old controversies as well as emerging new questions, opening up a new era for generating variance-based hypotheses.  相似文献   

8.
It is known for a long time that exercise increases physical adequacy, has beneficial effects on the general health condition as well as a playing preventing role against various disease states. To decrease the risk of disease and maintain good health, the natural defense system of the organism needs to be strengthened. It is thought that in addition to increasing the body's resistance to disease through the strengthening of the immune system, decreases the convalescence time, increases work efficiency and improves the sportive performance of the individual all which would contribute positively to the national economy. The positive effects of regular exercising of aerobic nature such as strengthening of the immune system, protection against diseases as well as its positive effects on quality of life will help to emphasize the importance of physical exercise and improve the general view of sports by society.  相似文献   

9.
Regular physical activity has a positive impact on cognition and brain function. Here we investigated if a single bout of exercise can improve motor memory and motor skill learning. We also explored if the timing of the exercise bout in relation to the timing of practice has any impact on the acquisition and retention of a motor skill. Forty-eight young subjects were randomly allocated into three groups, which practiced a visuomotor accuracy-tracking task either before or after a bout of intense cycling or after rest. Motor skill acquisition was assessed during practice and retention was measured 1 hour, 24 hours and 7 days after practice. Differences among groups in the rate of motor skill acquisition were not significant. In contrast, both exercise groups showed a significantly better retention of the motor skill 24 hours and 7 days after practice. Furthermore, compared to the subjects that exercised before practice, the subjects that exercised after practice showed a better retention of the motor skill 7 days after practice. These findings indicate that one bout of intense exercise performed immediately before or after practicing a motor task is sufficient to improve the long-term retention of a motor skill. The positive effects of acute exercise on motor memory are maximized when exercise is performed immediately after practice, during the early stages of memory consolidation. Thus, the timing of exercise in relation to practice is possibly an important factor regulating the effects of acute exercise on long-term motor memory.  相似文献   

10.
ABSTRACT: BACKGROUND: It is generally accepted that an active lifestyle is beneficial for cognition in children, adults and the elderly. Recently, studies using the rat animal model found that the pups of mothers who exercised during pregnancy had increased hippocampal neurogenesis and better memory and learning abilities. The aim of this report is to present the experimental protocol of a study that is designed to verify if an active lifestyle during pregnancy in humans has an impact on the newborn's brain. METHODS: 60 pregnant women will be included in a randomized controlled study. The experimental group will be asked to exercise a minimum of 20 minutes three times per week, at a minimal intensity of 55% of their maximal aerobic capacity. The control group will not be exercising. The effect of exercise during pregnancy on the newborn's brain will be investigated 8 to 12 days postpartum by means of the mismatch negativity, a neurophysiological brain potential that is associated to auditory sensory memory. We hypothesize that children born to mothers who exercised during their pregnancy will present shorter latencies and larger mismatch negativity amplitudes, indicating more efficient auditory memory processes. DISCUSSION: As of September 2011, 17 women have joined the study. Preliminary results show that the experimental group are active 3.1 +/- 0.9 days per week while the control group only exercise 0.8 +/- 0.6 days per week. The results of this study will present insight on fetal neuroplasticity and will be a valuable tool for health professionals who wish to encourage pregnant women to exercise. Trial registration ClinicalTrials.gov registration: NTC01220778.  相似文献   

11.
ABSTRACT: The use of herbs as ergogenic aids in exercise and sport is not novel. Ginseng, caffeine, ma huang (also called 'Chinese ephedra'), ephedrine and a combination of both caffeine and ephedrine are the most popular herbs used in exercise and sports. It is believed that these herbs have an ergogenic effect and thus help to improve physical performance. Numerous studies have been conducted to investigate the effects of these herbs on exercise performance. Recently, researchers have also investigated the effects of Eurycoma longifolia Jack on endurance cycling and running performance. These investigators have reported no significant improvement in either cycling or running endurance after supplementation with this herb. As the number of studies in this area is still small, more studies should be conducted to evaluate and substantiate the effects of this herb on sports and exercise performance. For instance, future research on any herbs should take the following factors into consideration: dosage, supplementation period and a larger sample size.  相似文献   

12.
We provide a brief review of the literature on exercise effects on brain and cognition. To this end, we focus on both prospective and retrospective human epidemiological studies that have examined the influence of exercise and physical activity on cognition and dementia. We then examine the relatively small set of human randomized clinical trials that have, for the most part, focused on exercise training effects on cognition. Next, we discuss animal research that has examined the molecular, cellular, and behavioral effects of exercise training. Finally, we conclude with a summary and brief discussion of important future directions of research on fitness cognition and brain.  相似文献   

13.
Aging and obesity increase multimorbidity and disability risk, and determining interventions for reversing healthspan decline is a critical public health priority. Exercise and time‐restricted feeding (TRF) benefit multiple health parameters when initiated in early life, but their efficacy and safety when initiated at older ages are uncertain. Here, we tested the effects of exercise versus TRF in diet‐induced obese, aged mice from 20 to 24 months of age. We characterized healthspan across key domains: body composition, physical, metabolic, and cardiovascular function, activity of daily living (ADL) behavior, and pathology. We demonstrate that both exercise and TRF improved aspects of body composition. Exercise uniquely benefited physical function, and TRF uniquely benefited metabolism, ADL behavior, and circulating indicators of liver pathology. No adverse outcomes were observed in exercised mice, but in contrast, lean mass and cardiovascular maladaptations were observed following TRF. Through a composite index of benefits and risks, we conclude the net healthspan benefits afforded by exercise are more favorable than those of TRF. Extrapolating to obese older adults, exercise is a safe and effective option for healthspan improvement, but additional comprehensive studies are warranted before recommending TRF.  相似文献   

14.
Lack of exercise contributes to systemic inflammation and is a major cause of chronic disease. The long-term impact of initiating and sustaining exercise in late life, as opposed to sustaining a sedentary lifestyle, on whole-body health measures such as physical performance is not well known. This is an exploratory study to compare changes in physical performance among older adults initiating exercise late in life versus inactive older adults. Data from two observational cohorts were included in this analysis, representing two activity groups. The Active group cohort comprises older adults (n = 318; age 72.5 ± 7.2 years) enrolled in a supervised exercise program, “Gerofit.” The inactive group comprises older adults (n = 146; age 74.5 ± 5.5 years) from the Italian study “Act on Ageing” (AOA) who self-reported being inactive. Participants in both groups completed physical performance battery at baseline and 1-year including: 6-min walk test, 30-s chair stand, and timed up-and-go. Two-sample t-tests measured differences between Gerofit and AOA at baseline and 1-year across all measures. Significant between-group effects were seen for all performance measures (ps = 0.001). The AOA group declined across all measures from baseline to 1 year (range −18% to −24% change). The Gerofit group experienced significant gains in function for all measures (range +10% to +31% change). Older adults who initiated routine, sustained exercise were protected from age-related declines in physical performance, while those who remained sedentary suffered cumulative deficits across strength, aerobic endurance, and mobility. Interventions to reduce sedentary behaviors and increase physical activity are both important to promote multi-system, whole-body health.  相似文献   

15.
周文婷 《遗传》2014,36(4):301-308
个体间运动能力的差异受多种因素影响, 其中环境和遗传因素可能起决定作用。2008年以来涌现了大量的运动能力遗传学研究, 获得了一系列有意义的结果。文章以体力活动水平、肌肉力量及耐力水平3方面为重点, 着重对涉及以上3方面遗传学研究中的研究结果(样本大小、测试表型的质量优劣、运动实验计划的质量高低、研究设计的合理性和新颖性、实验测试的控制情况以及基因分型情况等)进行了比较分析, 以期为研究者提供参考。  相似文献   

16.
Neuroelectric measurement of cognition during aerobic exercise   总被引:1,自引:0,他引:1  
The application of neuroimaging techniques to assess changes in brain and cognition during exercise has received little attention due to issues related to artifact associated with gross motor movement inherent in physical activity behaviors. Although many neuroimaging techniques have not yet progressed to a point where movement artifact may be controlled, event-related brain potentials (ERPs), which measure neuroelectric responses to specific events, can account for such issues in controlled environments. This paper discusses the deviations from standard neuroelectric recording procedures and signal processing that are necessary for the collection and analysis of ERPs during gross motor movement. Considerations include the properties of the exercise behavior, task instructions, and the position of materials in the stimulus environment, as well as issues related to electrode impedance, additional reduction techniques, and the plotting of single trials to identify movement artifacts. These techniques provide a means for collecting clean data from the neuroelectric system to provide further understanding of changes in brain and cognition that occur online during exercise behavior, and serves as a novel application of neuroimaging to the kinesiological sciences.  相似文献   

17.
Previous studies investigating the impact of circadian rhythms on physiological variables during exercise have yielded conflicting results. The purpose of the present investigation was to examine maximal aerobic exercise performance, as well as the physiological and psychophysiological responses to exercise, at four different intervals (0800 hours, 1200 hours, 1600 hours, and 2000 hours) within the segment of the 24-h day in which strenuous physical activity is typically performed. Ten physically fit, but untrained, male university students served as subjects. The results revealed that exercise performance was unaffected by chronobiological effects. Similarly, oxygen uptake, minute ventilation and heart rate showed no time of day influences under pre-, submaximal, and maximal exercise conditions. Ratings of perceived exertion were unaffected by time of day effects during submaximal and maximal exercise. In contrast, rectal temperature exhibited a significant chronobiological rhythm under all three conditions. Under pre- and submaximal exercise conditions, significant time of day effects were noted for respiratory exchange ratio, while a significant rhythmicity of blood pressure was evident during maximal exercise. However, none of these physiological variables exhibited significant differential responses (percent change from pre-exercise values) to the exercise stimulus at any of the four time points selected for study. Conversely, resting plasma lactate levels and lactate responses to maximal exercise were found to be significantly sensitive to chronobiological influences. Absolute post-exercise plasma norepinephrine values, and norepinephrine responses to exercise (percent change from pre-exercise values), also fluctuated significantly among the time points studied. In summary, these data suggest that aerobic exercise performance does not vary during the time frame within which exercise is normally conducted, despite the fact that some important physiological responses to exercise do fluctuate within that time period. Accepted: 18 August 1997  相似文献   

18.
Voluntary exercise has been implicated to be beneficial for overall health and cognitive function in both clinical and experimental studies, but little is presently known about forced physical exercise on cognition and underlying molecular mechanism. We have used real-time RT-PCR to analyze gene expression in hippocampus, in the presence and absence of physical exercise, during spatial learning of rats in the Morris water maze. Our results show distinct zinc homeostasis-related gene expression profiles associated with learning and memory. Rats with physical exercise (EXP) showed a significant up-regulation of mRNA expression of zinc transporter-2 (ZnT-2), ZnT-4, ZnT-5, ZnT-6, and ZnT-7, metallothionein-1 (MT-1)–MT-3, divalent cation transporter-1, and Zrt-Irt-like proteins-7 in hippocampus when compared with control rats. In addition, spatial learning ability was improved in EXP rats compared with that in control group. This study provides the first comparative view of zinc homeostasis-related gene expression in hippocampus following forced physical exercise. These results suggested that forced physical exercise may provide a simple means to maintain brain function and promote learning capacity. Results of this study also suggest that exercise mobilizes zinc homeostasis-related gene expression profiles that would be predicted to benefit brain plasticity processes.  相似文献   

19.
Aging and aerobic exercise are two conditions known to interfere with health and quality of life, most likely by inducing oxidative stress to the organism. We studied the effects of aging on the morphological and functional properties of skeletal, cardiac, and intestinal muscles and their corresponding oxidative status in C57BL/6 mice and investigated whether a lifelong moderate exercise program would exert a protective effect against some deleterious effects of aging. As expected, aged animals presented a significant reduction of physical performance, accompanied by a decrease of gastrocnemius cross-sectional area and cardiac hypertrophy. However, most interesting was that aging dramatically interfered with the intestinal structure, causing a significant thickening of the ileum muscular layer. Senescent intestinal myocytes displayed many mitochondria with disorganized cristae and the presence of cytosolic lamellar corpuscles. Lipid peroxidation of ileum and gastrocnemius muscle, but not of the heart, increased in aged mice, thus suggesting enhanced oxidative stress. With exception of the intestinal muscle responsiveness, animals submitted to a daily session of 60 min, 5 days/wk, at 13 up to 21 m/min of moderate running in treadmill during animal life span exhibited a reversion of all the observed aging effects on intestinal, skeletal, and heart muscles. The introduction of this lifelong exercise protocol prevented the enhancement of lipid peroxidation and sarcopenia and also preserved cellular and ultracellular structures of the ileum. This is the first time that the protective effect of a lifelong regular aerobic physical activity against the deleterious effects of aging on intestinal muscle was demonstrated.  相似文献   

20.

Background

Developing non-pharmacological interventions with strong potential to prevent or delay the onset of Alzheimer’s disease (AD) in high-risk populations is critical. Aerobic exercise and cognitive training are two promising interventions. Aerobic exercise increases aerobic fitness, which in turn improves brain structure and function, while cognitive training improves selective brain function intensively. Hence, combined aerobic exercise and cognitive training may have a synergistic effect on cognition by complementary strengthening of different neural functions. Few studies have tested the effects of such a combined intervention, and the findings have been discrepant, largely due to varying doses and formats of the interventions.

Methods/design

The purpose of this single-blinded, 2?×?2 factorial phase II randomized controlled trial is to test the efficacy and synergistic effects of a 6-month combined cycling and speed of processing training intervention on cognition and relevant mechanisms (aerobic fitness, cortical thickness, and functional connectivity in the default mode network) in older adults with amnestic mild cognitive impairment. This trial will randomize 128 participants equally to four arms: cycling and speed of processing, cycling only, speed of processing only, or attention control for 6?months, and then follow them for another 12?months. Cognition and aerobic fitness will be assessed at baseline and at 3, 6, 12, and 18?months; cortical thickness and functional connectivity at baseline and at 6, 12, and 18?months; Alzheimer’s disease (AD) conversion at 6, 12, and 18?months. The specific aims are to (1) determine the efficacy and synergistic effects of the combined intervention on cognition over 6?months, (2) examine the underlying mechanisms of the combined intervention, and (3) calculate the long-term effect sizes of the combined intervention on cognition and AD conversion. The analysis will use intention-to-treat and linear mixed-effects modeling.

Discussion

This trial will be among the first to test the synergistic effects on cognition and mechanisms (relevant to Alzheimer’s-associated neurodegeneration) of a uniquely conceptualized and rigorously designed aerobic exercise and cognitive training intervention in older adults with mild cognitive impairment. It will advance Alzheimer’s prevention research by providing precise effect-size estimates of the combined intervention.

Trial registration

ClinicalTrials.gov, NCT03313895. Registered on 18 October 2017.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号