首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
TrwB is an integral membrane protein linking the relaxosome to the DNA transport apparatus in plasmid R388 conjugation. Native TrwB has been purified in monomeric and hexameric forms, in the presence of dodecylmaltoside from overexpressing bacterial cells. A truncated protein (TrwBDeltaN70) that lacked the transmembrane domain could be purified only in the monomeric form. Electron microscopy images revealed the hexameric structure and were in fact superimposable to the previously published atomic structure for TrwBDeltaN70. In addition, the electron micrographs showed an appendix, approximately 25 A wide, corresponding to the transmembrane region of TrwB. TrwB was located in the bacterial inner membrane in agreement with its proposed coupling role. Purified TrwB hexamers and monomers bound tightly the fluorescent ATP analogue TNP-ATP. A mutant in the Walker A motif, TrwB-K136T, was equally purified and found to bind TNP-ATP with a similar affinity to that of the wild type. However, the TNP-ATP affinity of TrwBDeltaN70 was significantly reduced in comparison with the TrwB hexamers. Competition experiments in which ATP was used to displace TNP-ATP gave an estimate of ATP binding by TrwB (K(d)((ATP)) = 0.48 mm for hexamers). The transmembrane domain appears to be involved in TrwB protein hexamerization and also influences its nucleotide binding properties.  相似文献   

2.
TrwB is an integral membrane protein that plays a crucial role in the conjugative process of plasmid R388. We have recently shown [Vecino et al., Biochim. Biophys. Acta 1798(11), 2160-2169 (2010)] that TrwB can be reconstituted into liposomes, and that bilayer incorporation increases its affinity for nucleotides and its specificity for ATP. In the present contribution we examine the structural effects of membrane insertion on TrwB, by comparing the protein in reconstituted form and in the form of protein/lipid/detergent mixed micelles. TrwB was reconstituted in PE:PG:CL (76.3:19.6:4.1mol ratio) with a final 99:1 lipid:protein mol ratio. This lipid mixture is intended to mimic the bacterial inner membrane composition, and allows a more efficient reconstitution than other lipid mixtures tested. The studies have been carried out mainly using infrared spectroscopy, because this technique provides simultaneously information on both the lipid and protein membrane components. Membrane reconstitution of TrwB is accompanied by a decrease in β-sheet contents and an increase in β-strand structures, probably related to protein-protein contacts in the bilayer. The predominant α-helical component remains unchanged. The bilayer-embedded protein becomes thermally more stable, and also more resistant to trypsin digestion. The properties of the bilayer lipids are also modified in the presence of TrwB, the phospholipid acyl chains are slightly ordered, and the phosphate groups at the interface become more accessible to water. In addition, we observe that the protein thermal denaturation affects the lipid thermal transition profile.  相似文献   

3.
F(+) strains of Escherichia coli infected with donor-specific bacteriophage such as M13 are sensitive to bile salts. We show here that this sensitivity has two components. The first derives from secretion of bacteriophage particles through the cell envelope, but the second can be attributed to expression of the F genes required for the formation of conjugative (F) pili. The latter component was manifested as reduced or no growth of an F(+) strain in liquid medium containing bile salts at concentrations that had little or no effect on the isogenic F(-) strain or as a reduced plating efficiency of the F(+) strain on solid media; at 2% bile salts, plating efficiency was reduced 10(4)-fold. Strains with F or F-like R factors were consistently more sensitive to bile salts than isogenic, plasmid-free strains, but the quantitative effect of bile salts depended on both the plasmid and the strain. Sensitivity also depended on the bile salt, with conjugated bile salts (glycocholate and taurocholate) being less active than unconjugated bile salts (deoxycholate and cholate). F(+) cells were also more sensitive to sodium dodecyl sulfate than otherwise isogenic F(-) cells, suggesting a selectivity for amphipathic anions. A mutation in any but one F tra gene required for the assembly of F pili, including the traA gene encoding F pilin, substantially restored bile salt resistance, suggesting that bile salt sensitivity requires an active system for F pilin secretion. The exception was traW. A traW mutant was 100-fold more sensitive to cholate than the tra(+) strain but only marginally more sensitive to taurocholate or glycocholate. Bile salt sensitivity could not be attributed to a generalized change in the surface permeability of F(+) cells, as judged by the effects of hydrophilic and hydrophobic antibiotics and by leakage of periplasmic beta-lactamase into the medium.  相似文献   

4.
Assemblies of plasmid-encoded proteins direct the conjugative transfer of plasmid DNA molecules between bacteria. These include the membrane-associated mating pair formation (Mpf) complex necessary for pilus production and the cytoplasmic relaxosome required for DNA processing. The proposed link between these distinct protein complexes is the coupling protein (the TraG family of proteins). Interactions between the coupling protein and relaxosome components have been previously characterized and we document here, for the first time, a direct interaction between the coupling protein and an Mpf protein. Using the adenylate cyclase bacterial two-hybrid (BTH) system, we present in vivo evidence that the IncHI1 plasmid R27-encoded proteins TraG and TrhB interact. This interaction was verified through a co-immunoprecipitation reaction. We have also been able to delineate the interaction domain of TrhB to TraG by showing a positive interaction using the first 220 amino acids of TrhB (452 aa). TrhB has a proline-rich domain from amino acids 135-173 which may serve to facilitate protein interactions and/or periplasmic extension. TrhB self association was detected using far-Western, co-immunoprecipitation, and also BTH analysis, which was used to define the homotypic interaction domain, comprising a predicted coiled-coil region at residues 77-124 of TrhB. These data support a model in which the coupling protein interacts with an Mpf component to target the transferring DNA strand held by the relaxosome to the transmembrane Mpf complex.  相似文献   

5.
TrwB is the conjugative coupling protein of plasmid R388. TrwBDeltaN70 contains the soluble domain of TrwB. It was constructed by deletion of trwB sequences containing TrwB N-proximal transmembrane segments. Purified TrwBDeltaN70 protein bound tightly the fluorescent ATP analogue TNP-ATP (K(s) = 8.7 microM) but did not show measurable ATPase or GTPase activity. A single ATP binding site was found per TrwB monomer. An intact ATP-binding site was essential for R388 conjugation, since a TrwB mutant with a single amino acid alteration in the ATP-binding signature (K136T) was transfer-deficient. TrwBDeltaN70 also bound DNA nonspecifically. DNA binding enhanced TrwC nic cleavage, providing the first evidence that directly links TrwB with conjugative DNA processing. Since DNA bound by TrwBDeltaN70 also showed increased negative superhelicity (as shown by increased sensitivity to topoisomerase I), nic cleavage enhancement was assumed to be a consequence of the increased single-stranded nature of DNA around nic. The mutant protein TrwB(K136T)DeltaN70 was indistinguishable from TrwBDeltaN70 with respect to the above properties, indicating that TrwB ATP binding activity is not required for them. The reported properties of TrwB suggest potential functions for conjugative coupling proteins, both as triggers of conjugative DNA processing and as motors in the transport process.  相似文献   

6.
We have examined transfected cells by immunofluorescence microscopy to determine the signals and structural features required for the targeting of integral membrane proteins to the inner nuclear membrane. Lamin B receptor (LBR) is a resident protein of the nuclear envelope inner membrane that has a nucleoplasmic, amino-terminal domain and a carboxyl-terminal domain with eight putative transmembrane segments. The amino-terminal domain of LBR can target both a cytosolic protein to the nucleus and a type II integral protein to the inner nuclear membrane. Neither a nuclear localization signal (NLS) of a soluble protein, nor full-length histone H1, can target an integral protein to the inner nuclear membrane although they can target cytosolic proteins to the nucleus. The addition of an NLS to a protein normally located in the inner nuclear membrane, however, does not inhibit its targeting. When the amino-terminal domain of LBR is increased in size from approximately 22.5 to approximately 70 kD, the chimeric protein cannot reach the inner nuclear membrane. The carboxyl-terminal domain of LBR, separated from the amino-terminal domain, also concentrates in the inner nuclear membrane, demonstrating two nonoverlapping targeting signals in this protein. Signals and structural features required for the inner nuclear membrane targeting of proteins are distinct from those involved in targeting soluble polypeptides to the nucleoplasm. The structure of the nucleocytoplasmic domain of an inner nuclear membrane protein also influences targeting, possibly because of size constraints dictated by the lateral channels of the nuclear pore complexes.  相似文献   

7.
Legionella pneumophila, the causative agent of Legionnaires' disease, survives in macrophages by altering the endocytic pathway of its host cell. To accomplish this, the bacterium utilizes a type IVB secretion system to deliver effector molecules into the host cell cytoplasm. In a previous report, we performed an extensive characterization of the L. pneumophila type IVB secretion system that resulted in the identification of a critical five-protein subcomplex that forms the core of the secretion apparatus. Here we describe a second Dot/Icm protein subassembly composed of the type IV coupling protein DotL, the apparatus proteins DotM and DotN, and the secretion adaptor proteins IcmS and IcmW. In the absence of IcmS or IcmW, DotL becomes destabilized at the transition from the exponential to stationary phases of growth, concurrent with the expression of many secreted substrates. Loss of DotL is dependent on ClpA, a regulator of the cytoplasmic protease ClpP. The resulting decreased levels of DotL in the icmS and icmW mutants exacerbates the intracellular defects of these strains and can be partially suppressed by overproduction of DotL. Thus, in addition to their role as chaperones for Legionella type IV secretion system substrates, IcmS and IcmW perform a second function as part of the Dot/Icm type IV coupling protein subcomplex.  相似文献   

8.
Escherichia coli-derived phosphatidylethanolamine (PE) or PE with fully saturated fatty acids was able to correct in vitro a defect in folding in the lipid-dependent epitope 4B1 of lactose permease (LacY) resulting from in vivo assembly in the absence of PE. PE plasmalogen, PE with two unsaturated fatty acids, and lyso-PE, which all do not favor bilayer organization, did not support proper refolding. Proper refolding occurred when these latter lipids were mixed with a bilayer-forming lipid (phosphatidylglycerol), which alone could not support refolding. L-Phosphatidylserine (PS; natural diastereomer) did support proper refolding. PE derivatives of increasing degrees of methylation were progressively less effective in supporting refolding, with phosphatidylcholine being completely ineffective. Therefore, the properties of nonmethylated aminophospholipids capable of organization into a bilayer configuration are essential for the recovery of the native state of epitope 4B1 after misassembly in vivo in the absence of PE. Neither D-PS (sn-glycero-1-phosphate backbone) nor P-D-S (D-serine in the head group) is competent in supporting proper refolding unless used in binary mixtures with phosphatidylglycerol. The detailed characterization of phospholipid-assisted refolding reported here further supports a specific rather than nonspecific role for PE in structural maturation of lactose permease in vivo (Bogdanov, M., and Dowhan, W. (1998) EMBO J. 17, 5255-5264).  相似文献   

9.
SM23 is an integral membrane protein of the blood-vessel dwelling parasitic worm Schistosoma mansoni. This protein has been detected with antibodies in all stages of the parasite found in the human host, notably the lung stage, and therefore is of interest as a vaccine candidate. In addition SM23 has been shown to be a member of a proposed new superfamily of membrane proteins whose structures do not conform to the previously known classifications. To date there are 13 members including ME491 (CD63, Pltgp40), CD9 (p23), TAPA-1, CD37, CD53, MRC OX-44, CO-029, MRP-1, L6, the gene product of TI-1, the target of mAb AD-1, SM23, and SJ23 (the Schistosoma japonicum homologue). Most of these molecules except for those in the two blood vessel-dwelling parasites are found in membranes of hemopoietic and/or malignant cells and all have unknown function. In this study we used recombinantly expressed full-length and partial molecules as well as synthesized peptides to map T cell and B cell epitopes of SM23. The two predicted external hydrophilic domains were found to be highly immunogenic and contained several B cell epitopes. There were at least four T cell epitopes in the large hydrophilic domain. One segment of 23 amino acids contained both a T cell and B cell epitope as well as the putative glycosylation site. This particular segment was recognized by immune sera and cells of every mouse strain tested. The elucidation of these epitopes demonstrates the immunogenic nature of this molecule and raises questions as to the role of SM23 in the host/parasite relationship.  相似文献   

10.
TrwB is an integral membrane protein encoded by the conjugative plasmid R388. TrwB binds ATP and is essential for R388-directed bacterial conjugation. The protein consists of a cytosolic domain, which contains an ATP-binding site, and a transmembrane domain. The complete protein has been purified in the presence of detergents, and in addition, the cytosolic domain has also been isolated in the form of a soluble truncated protein, TrwBDeltaN70. The availability of intact and truncated forms of the protein provides a convenient system to study the role of the transmembrane domain in the stability of TrwB. Protein denaturation was achieved by heat, in the presence of guanidinium HCl, or under low salt conditions. In all three cases TrwB was significantly more stable than TrwBDeltaN70 with other conditions being the same. IR spectroscopy of the native and truncated forms revealed significant differences between them. In addition, it was found that TrwBDeltaN70 was stabilized in dispersions of non-ionic detergent, suggesting the presence of hydrophobic patches on the surface of the truncated protein. IR spectroscopy also confirmed the conformational stability provided by the detergent. These results suggest that in integral membrane proteins consisting of a transmembrane and a cytosolic domain, the transmembrane portion may have a role beyond the mere anchoring of the protein to the cell membrane. In addition, this study indicates that the truncated soluble parts of two-domain membrane proteins may not reflect the physiological conformation of their native counterparts.  相似文献   

11.
Attempts to isolate conditionally lethal recB and recC mutations of Escherichia coli K-12 by P1 localized mutagenesis led to the identification of the structural gene for an essential membrane protein. Located on a 1.5-kilobase-pair DNA fragment which physically mapped immediately 5' to the thyA gene, the product of the umpA (unidentified membrane protein) gene is a 25,000 Mr membrane-associated polypeptide. These results provide an explanation for why several research groups have been unable to obtain chromosomal deletions of the entire thyA gene. A possible interaction between the umpA and thyA genes is also discussed.  相似文献   

12.
In this study we used the yeast two-hybrid system to identify interactions between protein subunits of the virB type IV secretion system of Bartonella henselae. We report interactions between inner membrane and periplasmic proteins, the pilus polypeptide, and the core complex and a novel interaction between VirB3 and VirB5.  相似文献   

13.
Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. VirB4 was suggested to be an ATPase involved in energizing pilus assembly and substrate transport. However, conflicting experimental evidence concerning VirB4 ATP hydrolase activity was reported. Here, we demonstrate that TrwK is able to hydrolyze ATP in vitro in the absence of its potential macromolecular substrates and other T4SS components. The kinetic parameters of its ATPase activity have been characterized. The TrwK oligomerization state was investigated by analytical ultracentrifugation and electron microscopy, and its effects on ATPase activity were analyzed. The results suggest that the hexameric form of TrwK is the catalytically active state, much like the structurally related protein TrwB, the conjugative coupling protein.  相似文献   

14.
We report a multifaceted study of the active site region of human pancreatic alpha-amylase. Through a series of novel kinetic analyses using malto-oligosaccharides and malto-oligosaccharyl fluorides, an overall cleavage action pattern for this enzyme has been developed. The preferred binding/cleavage mode occurs when a maltose residue serves as the leaving group (aglycone sites +1 and +2) and there are three sugars in the glycon (-1, -2, -3) sites. Overall it appears that five binding subsites span the active site, although an additional glycon subsite appears to be a significant factor in the binding of longer substrates. Kinetic parameters for the cleavage of substrates modified at the 2 and 4' ' positions also highlight the importance of these hydroxyl groups for catalysis and identify the rate-determining step. Further kinetic and structural studies pinpoint Asp197 as being the likely nucleophile in catalysis, with substitution of this residue leading to an approximately 10(6)-fold drop in catalytic activity. Structural studies show that the original pseudo-tetrasaccharide structure of acarbose is modified upon binding, presumably through a series of hydrolysis and transglycosylation reactions. The end result is a pseudo-pentasaccharide moiety that spans the active site region with its N-linked "glycosidic" bond positioned at the normal site of cleavage. Interestingly, the side chains of Glu233 and Asp300, along with a water molecule, are aligned about the inhibitor N-linked glycosidic bond in a manner suggesting that these might act individually or collectively in the role of acid/base catalyst in the reaction mechanism. Indeed, kinetic analyses show that substitution of the side chains of either Glu233 or Asp300 leads to as much as a approximately 10(3)-fold decrease in catalytic activity. Structural analyses of the Asp300Asn variant of human pancreatic alpha-amylase and its complex with acarbose clearly demonstrate the importance of Asp300 to the mode of inhibitor binding.  相似文献   

15.
xcp mutations have pleiotropic effects on the secretion of proteins in Pseudomonas aeruginosa PAO. The nucleotide sequence of a 1.2-kb DNA fragment that complements the xcp-1 mutation has been determined. Sequence analysis shows the xcpA gene product to be a 31.8-kDa polypeptide, with a highly hydrophobic character. This is consistent with a localization in the cytoplasmic membrane in P. aeruginosa, determined after specific expression of the xcpA gene under control of the T7 phi 10 promoter. A very strong homology was found between XcpA and PulO, a membrane protein required for pullulanase secretion in Klebsiella pneumoniae. This suggests the existence of a signal sequence-dependent secretion process common to these two unrelated gram-negative bacteria.  相似文献   

16.
The membrane-bound cation-transporting P-type Na,K-ATPase isolated from pig kidney membranes is much more resistant towards thermal inactivation than the almost identical membrane-bound Na,K-ATPase isolated from shark rectal gland membranes. The loss of enzymatic activity is correlated well with changes in protein structure as determined using synchrotron radiation circular dichroism (SRCD) spectroscopy. The enzymatic activity is lost at a 12°C higher temperature for pig enzyme than for shark enzyme, and the major changes in protein secondary structure also occur at T(m)'s that are ~10-15°C higher for the pig than for the shark enzyme. The temperature optimum for the rate of hydrolysis of ATP is about 42°C for shark and about 57°C for pig, both of which are close to the temperatures for onset of thermal unfolding. These results suggest that the active site region may be amongst the earliest parts of the structure to unfold. Detergent-solubilized Na,K-ATPases from the two sources show the similar differences in thermal stability as the membrane-bound species, but inactivation occurs at a lower temperature for both, and may reflect the stabilizing effect of a bilayer versus a micellar environment.  相似文献   

17.
The Profiles-3D application, an inverse-folding methodology appropriate for water-soluble proteins, has been modified to allow the determination of structural properties of integral-membrane proteins (IMPs) and for testing the validity of solved and model structures of IMPs. The modification, known as reverse-environment prediction of integral membrane protein structure (REPIMPS), takes into account the fact that exposed areas of side chains for many residues in IMPs are in contact with lipid and not the aqueous phase. This (1) allows lipid-exposed residues to be classified into the correct physicochemical environment class, (2) significantly improves compatibility scores for IMPs whose structures have been solved, and (3) reduces the possibility of rejecting a three-dimensional structure for an IMP because the presence of lipid was not included. Validation tests of REPIMPS showed that it (1) can locate the transmembrane domain of IMPs with single transmembrane helices more frequently than a range of other methodologies, (2) can rotationally orient transmembrane helices with respect to the lipid environment and surrounding helices in IMPs with multiple transmembrane helices, and (3) has the potential to accurately locate transmembrane domains in IMPs with multiple transmembrane helices. We conclude that correcting for the presence of the lipid environment surrounding the transmembrane segments of IMPs is an essential step for reasonable modeling and verification of the three-dimensional structures of these proteins.  相似文献   

18.
19.
The lamB701-708 signal sequence mutation reduces expression of LamB, an outer membrane protein of Escherichia coli. To investigate the possibility that synthesis and export of LamB are coupled, as suggested by the expression defect of the lamB701-708 mutation, we isolated intragenic suppressors of the lamB701-708 mutation. The expression defect imposed by the lamB701-708 mutation is suppressed by an export-defective signal sequence mutation, suggesting that translation and export are coupled. The additional observation that not all export-defective signal sequence mutations suppressed the lamB701-708 expression defect suggests that translational arrest can be uncoupled from export.  相似文献   

20.
Gene duplications, deletions, and point mutations in peripheral myelin protein 22 (PMP22) are linked to several inherited peripheral neuropathies. However, the structural and biochemical properties of this very hydrophobic putative tetraspan integral membrane protein have received little attention, in part because of difficulties in obtaining milligram quantities of wild type and disease-linked mutant forms of the protein. In this study a fusion protein was constructed consisting of a fragment of lambda repressor, a decahistidine tag, an intervening TEV protease cleavage site, a Strep tag, and the human PMP22 sequence. This fusion protein was expressed in Escherichia coli at a level of 10-20 mg/L of protein. Following TEV cleavage of the fusion partner, PMP22 was purified and its structural properties were examined in several different types of detergent micelles using cross-linking, near and far-UV circular dichroism, and nuclear magnetic resonance (NMR) spectroscopy. PMP22 is highly helical and, in certain detergents, shows evidence of stable tertiary structure. The protein exhibits a strong tendency to dimerize. The 1H-15N TROSY NMR spectrum is well dispersed and contains signals from all regions of the protein. It appears that detergent-solubilized PMP22 is amenable to detailed structural characterization via crystallography or NMR. This work sets the stage for more detailed studies of the structure, folding, and misfolding of wild type and disease-linked mutants in order to unravel the molecular defects underlying peripheral neuropathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号