共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with NF-kappa B p50 and p52 in a phosphorylation-dependent manner. 总被引:6,自引:7,他引:6 下载免费PDF全文
G P Nolan T Fujita K Bhatia C Huppi H C Liou M L Scott D Baltimore 《Molecular and cellular biology》1993,13(6):3557-3566
3.
The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I kappa B molecules and control nuclear translocation of NF-kappa B. 总被引:16,自引:7,他引:16 下载免费PDF全文
We have examined the interaction of the NF-kappa B precursor p105 with NF-kappa B subunits. Similar to an I kappa B molecule, p105 associates in the cytoplasm with p50 or p65. Through this assembly, p105 efficiently blocks nuclear transfer of either subunit. Moreover, the p105 protein inhibits DNA binding of dimeric NF-kappa B subunits in a similar, but not identical, manner to its isolated C-terminal domain, which contains an ankyrin-like repeat domain (ARD). The proto-oncogene product Bcl-3 also controls nuclear translocation of p50, but not of p65. Hence, p50 can be retained in the cytoplasm via at least three distinct interactions: through direct interactions either with its own precursor, with Bcl-3 or indirectly through I kappa B alpha or -beta when attached to p65. We discuss a function of p105 as a cytoplasmic assembly unit for homo- and heteromeric NF-kappa B complexes and of Bcl-3 as an I kappa B with novel subunit specificity. 相似文献
4.
Common structural constituents confer I kappa B activity to NF-kappa B p105 and I kappa B/MAD-3. 总被引:14,自引:4,他引:14 下载免费PDF全文
The vertebrate NF-kappa B/c-rel inhibitors MAD-3/I kappa B alpha, I kappa B gamma/pdI and bcl-3 all share a conserved ankyrin repeat domain (ARD) consisting of six complete repeats, a short acidic motif and/or an incomplete seventh repeat. We present here a detailed analysis of the domain in p105/pdI and MAD-3/I kappa B involved in inhibition of DNA binding and in protein interaction with rel factors. We demonstrate that in both cases an acidic region and six ankyrin-like repeats are sufficient and required for protein interaction with the rel factors. However, for p105/pdI to achieve the high affinity needed to suppress DNA binding, an incomplete seventh repeat is required in addition. Both pdI and MAD-3 associate with rel proteins by forming heterotrimeric complexes, as shown by native gel analysis and by cross-linking. Furthermore, we demonstrate that deletion of only three amino acids in the first repeat converts the subunit specificity of the p105 ARD into that of MAD-3/I kappa B. We conclude that functionally the ARD in these molecules has a modular structure, with different subregions determining the specificity for the NF-kappa B subunits p50 and p65. 相似文献
5.
6.
Proteolytic degradation of MAD3 (I kappa B alpha) and enhanced processing of the NF-kappa B precursor p105 are obligatory steps in the activation of NF-kappa B. 总被引:23,自引:3,他引:23 下载免费PDF全文
We have studied the role of protein turnover in the induction of NF-kappa B DNA binding activity. Treatment of cells with tumour necrosis factor (TNF), double-stranded RNA (dsRNA), or phorbol esters is shown to be associated with an increase in the rate of p105 to p50 processing, and the loss of immunologically detectable MAD3/I kappa B alpha. Phosphate-labelling experiments indicate that these events are preceded by the phosphorylation of MAD3 and p105. The protease inhibitors TLCK (N alpha-p-Tosyl-L-Lysine Chloromethyl Ketone) and TPCK (N alpha-p-Tosyl-L-Phenylalanine Chloromethyl Ketone) inhibit both p105 to p50 processing and MAD3 degradation, and also cause a complete block to NF-kappa B activation. These data suggest a model for NF-kappa B activation in which phosphorylation destabilises the NF-kappa B/MAD3 complex but that, in vivo, this is insufficient to lead to activation in the absence of an obligatory mechanism that degrades MAD3. 相似文献
7.
8.
9.
10.
11.
Phelps CB Sengchanthalangsy LL Huxford T Ghosh G 《The Journal of biological chemistry》2000,275(38):29840-29846
X-ray crystal structures of the NF-kappa B.I kappa B alpha complex revealed an extensive and complex protein-protein interface involving independent structural elements present in both I kappa B alpha and NF-kappa B. In this study, we employ a gel electrophoretic mobility shift assay to assess and quantitate the relative contributions of the observed interactions toward overall complex binding affinity. I kappa B alpha preferentially binds to the p50/p65 heterodimer and p65 homodimer, with binding to p50 homodimer being significantly weaker. Our results indicate that the nuclear localization sequence and the region C-terminal to it of the NF-kappa B p65 subunit is a major contributor to NF-kappa B. I kappa B alpha complex formation. Additionally, there are no contacts between the corresponding nuclear localization signal tetrapeptide of p50 and I kappa B alpha. A second set of interactions involving the acidic C-terminal/PEST-like region of I kappa B alpha and the NF-kappa B p65 subunit N-terminal domain also contributes binding energy toward formation of the complex. This interaction is highly dynamic and nonspecific in nature, as shown by oxidative cysteine cross-linking. Phosphorylation of the C-terminal/PEST-like region by casein kinase II further enhances binding. 相似文献
12.
The oncoprotein Bcl-3 can facilitate NF-kappa B-mediated transactivation by removing inhibiting p50 homodimers from select kappa B sites. 总被引:11,自引:3,他引:8 下载免费PDF全文
G Franzoso V Bours V Azarenko S Park M Tomita-Yamaguchi T Kanno K Brown U Siebenlist 《The EMBO journal》1993,12(10):3893-3901
Previously we have proposed a role for Bcl-3 in facilitating transactivation through kappa B sites by counteracting the inhibitory effects of bound, non-transactivating homodimers of the p50 subunit of NF-kappa B. Such homodimers are abundant for example in nuclei of unstimulated primary T cells. Here we extend the model and provide new evidence which fulfills a number of predictions. (i) Bcl-3 preferentially targets p50 homodimers over NF-kappa B heterodimers since the homodimers are completely dissociated from kappa B sites at concentrations of Bcl-3 which do not affect NF-kappa B. (ii) Select kappa B sites associate very strongly and stably with p50 homodimers, completely preventing binding by NF-kappa B. Such kappa B sites are likely candidates for regulation by p50 homodimers and Bcl-3. (iii) Bcl-3 and p50 can be co-localized in the nucleus, a requirement for active removal of homodimers from their binding sites in vivo. (iv) The ankyrin repeat domain of Bcl-3 is sufficient for the reversal of p50 homodimer-mediated inhibition, correlating with the ability of this domain alone to inhibit p50 binding to kappa B sites in vitro. Our data support the model that induction of nuclear Bcl-3 may be required during cellular stimulation to actively remove stably bound p50 homodimers from certain kappa B sites in order to allow transactivating NF-kappa B complexes to engage. This exact mechanism is demonstrated with in vitro experiments. 相似文献
13.
14.
15.
I kappa B gamma, a 70 kd protein identical to the C-terminal half of p110 NF-kappa B: a new member of the I kappa B family. 总被引:45,自引:0,他引:45
A cDNA corresponding to the 2.6 kb NF-kappa B mRNA species present in a variety of lymphoid cell lines has been molecularly cloned. The deduced 607 amino acid sequence is identical to the sequence of the C-terminal region of 110 kd NF-kappa B protein. A 70 kd protein can be identified in lymphoid cells using antibodies raised against the C-terminal region of p110 NF-kappa B. Comparison of the two-dimensional tryptic peptide maps of the 70 kd protein expressed in cells and the in vitro translated product encoded by the cDNA display extensive homology. The 70 kd protein expressed in bacteria prevents sequence-specific DNA binding of p50-p65 NF-kappa B heterodimer, p50 homodimer, and c-rel. p70 also interferes with transactivation by c-rel and prevents its nuclear translocation. The 70 kd protein, predominantly found in lymphoid cells, is a new member of the I kappa B family of proteins and is referred to as I kappa B gamma. 相似文献
16.
17.
18.
Evidence for differential functions of the p50 and p65 subunits of NF-kappa B with a cell adhesion model. 总被引:12,自引:6,他引:12 下载免费PDF全文
R Narayanan K A Higgins J R Perez T A Coleman C A Rosen 《Molecular and cellular biology》1993,13(6):3802-3810
The p50 and p65 subunits of NF-kappa B represent two members of a gene family that shares considerable homology to the rel oncogene. Proteins encoded by these genes form homo- and heterodimers which recognize a common DNA sequence motif. Recent data have suggested that homodimers of individual subunits of NF-kappa B can selectively activate gene expression in vitro. To explore this possibility in a more physiological manner, murine embryonic stem (ES) cells were treated with phosphorothio antisense oligonucleotides to either p50 or p65. Within 5 h after exposure to phosphorothio antisense p65 oligonucleotides, cells exhibited dramatic alterations in adhesion properties. Similar findings were obtained in a stable cell line that expressed a dexamethasone-inducible antisense mRNA to p65. Although antisense oligonucleotides raised against both p50 and p65 elicited a significant reduction in their respective mRNAs, only the cells treated with antisense p50 maintained a normal morphology. However, 6 days following removal of leukemia-inhibiting factor, a growth factor which suppresses embryonic stem cell differentiation, adhesion properties of cells treated with the antisense p50 oligonucleotides were markedly affected. The ability of the individual antisense oligonucleotides to elicit differential effects on cell adhesion, a property dependent upon the stage of differentiation, suggests that the p50 and p65 subunits of NF-kappa B regulate gene expression either as homodimers or as heterodimers with other rel family members. Furthermore, the finding that reduction in p65 expression alone had profound effects on cell adhesion properties indicates that p65 plays an important role in nonstimulated cells and cannot exist solely complexed with the cytosolic inhibitory protein I kappa B. 相似文献
19.
20.