首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An understanding of the evolutionary origins of insect foraging specialization is often hindered by a poor biogeographical and palaeoecological record. The historical biogeography (20,000 years before present to the present) of the desert-limited plant, creosote bush (Larrea tridentata), is remarkably complete. This history coupled with the distribution pattern of its bee fauna suggests pollen specialization for creosote bush pollen has evolved repeatedly among bees in the Lower Sonoran and Mojave deserts. In these highly xeric, floristically depauperate environments, species of specialist bees surpass generalist bees in diversity, biomass and abundance. The ability of specialist bees to facultatively remain in diapause through resource-poor years and to emerge synchronously with host plant bloom in resource-rich years probably explains their ecological dominance and persistence in these areas. Repeated origins of pollen specialization to one host plant where bloom occurs least predictably is a counter-example to prevailing theories that postulate such traits originate where the plant grows best and blooms most reliably Host-plant synchronization, a paucity of alternative floral hosts, or flowering attributes of creosote bush alone or in concert may account for the diversity of bee specialists that depend on this plant instead of nutritional factors or chemical coevolution between floral rewards and the pollinators they have evolved to attract.  相似文献   

2.
Bee dietary preferences,or the floral resources that they consistently collect,likely impact where a species can persist.For this reason it is likely that bee dietary preferences are dependent upon the composition of the plant community.In this study,we evaluated floral visits and pollen loads of the mining bee,Andrena angustitarsata Viereck,across a 630 km north-south range to understand dietary preferences along a floral resource gradient.Previous research,in a more geographically limited area,suggested this species was an eclectic oligolege on predominantly Apiaceae and in part Rosaceae.In the present study we found the species predominately visited and collected pollen from Apiaceae and Rosaceae,but visited 12 flower families and collected pollen from 32,distinguishing them as generalist foragers.The frequency of Apiaceae pollen on the bees and the species-level specialization index(a measure of visit specialization)were higher in regions with higher Apiaceae abundance.In addition Apiaceae and Rosaceae were the only plant families significantly preferred for pollen collection,regardless of floral abundance.We conclude that across our study region A.angustitarsata has a generalist dietary breadth,but also has dietary preference for Apiaceae and Rosaceae.Our study indicates that while bees may overall make generalist foraging decisions they may still prefer and likely benefit from selecting fewer flower taxa.  相似文献   

3.
Oligolectic bees are specialists that collect pollen from one or a few closely related species of plants, while polylectic bees are generalists that collect pollen from both related and unrelated species of plants. Because of their more restricted range of floral hosts, it is expected that specialists persist in more isolated populations than do generalists. We present data on the population structure of two closely related bee species sampled from a super abundant floral host in the southern Atacama Desert. Pairwise comparisons of population subdivision over identical distances revealed that the specialist bee had significantly more differentiated populations in comparison to the generalist. Further, populations of the specialist had significantly less genetic variation, measured as observed and expected heterozgyosity, than those of the generalist. Our data support the hypothesis of decreased gene flow among populations of the specialist bee even at equivalent geographic distances. The resulting reductions in effective population size for specialists make them particularly prone to extinction due to both demographic and genetic reasons. Our findings have important implications for the conservation of bees and other specialist insects. Deceased  相似文献   

4.
Moeller DA 《Oecologia》2005,142(1):28-37
The structure of diverse floral visitor assemblages and the nature of spatial variation in plant–pollinator interactions have important consequences for floral evolution and reproductive interactions among pollinator-sharing plant species. In this study, I use surveys of floral visitor communities across the geographic range of Clarkia xantiana ssp. xantiana (hereafter C. x. xantiana) (Onagraceae) to examine the structure of visitor communities, the specificity of the pollination system, and the role of variation in the abiotic vs. biotic environment in contributing to spatial variation in pollinator abundance and community composition. Although the assemblage of bee visitors to C. x. xantiana is very diverse (49 species), few were regular visitors and likely to act as pollinators. Seventy-four percent of visitor species accounted for only 11% of total visitor abundance and 69% were collected in three or fewer plant populations (of ten). Of the few reliable visitors, Clarkia pollen specialist bees were the most frequent visitors, carried more Clarkia pollen compared to generalist foragers, and were less likely to harbor foreign pollen. Overall, the core group of pollinators was obscured by high numbers of incidental visitors that are unlikely to contribute to pollination. In a geographic context, the composition of specialist pollinator assemblages varied considerably along the abiotic gradient spanning the subspecies range. However, the overall abundance of specialist pollinators in plant populations was not influenced by the broad-scale abiotic gradient but strongly affected by local plant community associations. C. x. xantiana populations sympatric with pollinator-sharing congeners were visited twice as often by specialists compared to populations occurring alone. These positive indirect interactions among plant species may promote population persistence and species coexistence by enhancing individual reproductive success.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

5.
Host‐plant selection is a key factor driving the ecology and evolution of insects. While the majority of phytophagous insects is highly host specific, generalist behavior is quite widespread among bees and presumably involves physiological adaptations that remain largely unexplored. However, floral visitation patterns suggest that generalist bees do not forage randomly on all available resources. While resource availability and accessibility as well as nectar composition have been widely explored, pollen chemistry could also have an impact on the range of suitable host‐plants. This study focuses on particular pollen nutrients that cannot be synthesized de novo by insects but are key compounds of cell membranes and the precursor for molting process: the sterols. We compared the sterol composition of pollen from the main host‐plants of three generalist bees: Anthophora plumipes, Colletes cunicularius, and Osmia cornuta, as well as one specialist bee Andrena vaga. We also analyzed the sterols of their brood cell provisions, the tissues of larvae and nonemerged females to determine which sterols are used by the different species. Our results show that sterols are not used accordingly to foraging strategy: Both the specialist species A. vaga and the generalist species C. cunicularius might metabolize a rare C27 sterol, while the two generalist species A. plumipes and O. cornuta might rather use a very common C28 sterol. Our results suggest that shared sterolic compounds among plant species could facilitate the exploitation of multiple host‐plants by A. plumipes and O. cornuta whereas the generalist C. cunicularius might be more constrained due to its physiological requirements of a more uncommon dietary sterol. Our findings suggest that a bee displaying a generalist foraging behavior may sometimes hide a sterol‐specialized species. This evidence challenges the hypothesis that all generalist free‐living bee species are all able to develop on a wide range of different pollen types.  相似文献   

6.
Williams NM 《Oecologia》2003,134(2):228-237
If trade-offs between flexibility to use a range of host species and efficiency on a limited set underlie the evolution of diet breadth, one resulting prediction is that specialists ought to be more restricted than generalists in their ability to use novel resource species. I used foraging tests and feeding trials to compare the ability of a generalist and a specialist solitary mason bee species to collect and develop on two pollen species that are not normally used in natural populations (novel pollens). Osmia lignaria (Hymenoptera: Megachilidae) is a generalist pollen feeder; O. californica, is more specialized. Adults of the specialist were more limited in use of novel hosts, but only in some contexts. Both bee species refused to collect one novel pollen. The specialist accepted a second novel pollen only when it was presented along with its normal pollen, whereas the generalist collected novel pollen whether presented alone or with normal pollen. Surprisingly, larvae of the specialist were more flexible than were generalists. The specialist grew well on mixtures of normal and novel pollen species, in some cases better than on its normal host alone. Larvae of the generalist grew more poorly on all diets containing novel pollens than on their normal host. Data on these two species of bees suggest that specialization by itself need not reduce flexibility on novel hosts. The findings also provide information about mechanisms of specialization in bees. Similar to some folivores, specific cues of the pollen host and the bee's interpretation of these contribute, along with foraging economics, to pollen choice by adults. The ability of the larvae to cope with specific components of one pollen species need not interfere with its ability to use others.  相似文献   

7.
Not all visitors to flowers are pollinators and pollinating taxa can vary greatly in their effectiveness. Using a combination of observations and experiments we compared the effectiveness of introduced honeybees with that of hummingbirds, native bees and moths on both the male and female components of fitness of the Andean shrub Duranta mandonii (Verbenaceae). Our results demonstrated significant variation among flower visitors in rates of visitation, pollen removal ability and contribution to fruit set. This variation was not always correlated; that is, taxa that regularly visited flowers did not remove the most pollen or contribute to fruit set. Despite the taxonomic diversity of visitors, the main natural pollinators of this shrub are large native bees, such as Bombus spp. Introduced honeybees were found to be as effective as native bees at pollinating this species. Duranta mandonii has high apparent generalization, but low realized generalization and can be considered to be a moderate ecological generalist (a number of species of large bees provide pollination services), but a functional specialist (most pollinators belong to a single functional group). The present study has highlighted the importance of measuring efficiency components when documenting plant–pollinator interactions, and has also demonstrated that visitation rates may give little insight into the relative importance of flower visitors.  相似文献   

8.
A recent alternative model to conventional coevolution, the geographic mosaic theory of coevolution, posits that reciprocal selection is episodic and local, rather than persistent and spatially extensive. However, little empirical evidence addresses this model's tenets, in particular the temporal stability of local plant–pollinator interactions. We evaluated this tenet using the richly diverse guild of bees at creosote bush ( Larrea tridentata ), a generalist plant that hosts many specialist bees. We systematically resampled over 2–5 years at 11 sites across the south-western USA. Incidence and abundance also were compared for survey sites sampled 20 ± 2 years earlier. Average Morisita-Horn faunal similarities of local bee guilds was 87% for sequential years and 36% after 20 years. Similarities in taxonomic composition of resampled local bee guilds could be statistically represented as a random assemblage drawn from the regional source pool of 54–68 bee species that could be expected at Larrea , weighted by regional abundance. At every site, only the minority of abundant bee species was typically persistent in local guilds, even after > 20 years. Most bee species in the Larrea guild were chronically uncommon, geographically sporadic and temporally unpredictable, attributes that render them numerically inconsequential as pollinators in their local guild. Persistence among abundant bee species in local pollinator assemblages satisfies one condition by which reciprocal selection could act locally. The well-being of these more abundant core species, and not bee diversity per se , may better characterize the health of such plant–pollinator associations.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 319–329.  相似文献   

9.
  1. Species exhibit a range of specialisation in diet and other niche axes, with specialists typically thought to be more efficient in resource use but more vulnerable to extinction than generalists. Among herbivorous insects, dietary specialists seem more likely to lack acceptable host plants during the insect's feeding stage, owing to fluctuations in host-plant abundance or phenology. Like other herbivores, bee species vary in host breadth from pollen specialisation (oligolecty) to generalisation (polylecty).
  2. Several studies have shown greater interannual variation in flowering phenology for earlier-flowering plants than later-flowering plants, suggesting that early-season bees may experience substantial year-to-year variation in the floral taxa available to them.
  3. It was therefore reasoned that, among bees, early phenology could be a more viable strategy for generalists, which can use resources from multiple floral taxa, than for specialists. Consequently, it was expected that the median dates of collection of adult specimens to be earlier for generalist species than for specialists. To test this, phenology data and pollen diet information on 67 North American species of the bee genus Osmia was obtained.
  4. Controlling for latitude and phylogeny, it was found that dietary generalisation is associated with significantly earlier phenology, with generalists active, on average, 11–14 days earlier than specialists.
  5. This result is consistent with the generalist strategy being more viable than the specialist strategy for species active in early spring, suggesting that dietary specialisation may constrain the evolution of bee phenology—or vice versa.
  相似文献   

10.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

11.
Floral traits and sexual systems in angiosperms are strategies that enhance outcrossing within hermaphrodite flowers and among individuals in a population. Sexual systems with unisexual flowers have also evolved among angiosperms, resulting in sex specialization. Furthermore, the interaction of floral traits and floral visitors determines successful plant reproduction. Globose cacti are bee pollinated, and variation in the diversity of their pollinator assemblages is strongly associated with floral phenotype. Our objective was to describe the floral biology of the cactus Coryphantha elephantidens and to determine its relationship with pollinators. Floral traits were studied by direct observations in live and fixed flowers. The breeding system was determined using two estimators based on floral morphology: pollen grains to ovules per flower (P/O) ratio and outcrossing index. Pollination treatments were conducted to determine the mating system. Floral visitors were recorded using direct observation. Flowers of C. elephantidens are variable in color, protandric, herkogamous and nectarless. Estimators of the breeding system indicated xenogamy, which is consistent with the obligate outcrossing revealed by the pollination experiment. Thirty-seven percent of the plants have female flowers that do not produce pollen, making this population functionally gynodioecious. Both fruit and seed set were high compared to other globose cacti. Pollinators included eight species of native bees, a more diverse pollinator assemblage than other globose cacti. Given the high pressure on pollen due to functional gynodioecy, nectarless flowers, an outcrossing mating system, and the necessity of pollinators to set seeds, we concluded that native bees are highly efficient pollinators that play a crucial role in the sexual reproduction of C. elephantidens.  相似文献   

12.
This study examined the reproductive biology of the invasive nitrogen-fixing shrub Elaeagnus umbellata. Hand-pollination experiments and pollinator-exclusion experiments were performed in four Illinois, U.S.A. populations to determine the breeding system of E. umbellata, and floral visitors were collected to determine pollinators in the invasive range. Although self-compatibility is a trait shown to confer invasiveness, our experiments revealed that E. umbellata is a mostly outcrossing species with a self-incompatible breeding system. Variation does exist in that a small percentage of individuals allow self-fertilization through autogamy. There is also variability among plants in the separation of male and female floral parts that may further affect selfing potential. The majority of floral visitors to E. umbellata were generalist pollinators, including bees, flies, and moths. Many of the larger insect visitors are pollinators of E. umbellata based on analysis of pollen on insect specimens, but smaller insects do not pollinate as frequently. Its ability to attract generalist pollinators means that E. umbellata will produce fruit wherever pollinators and mates occur; however, the low fruit set on open-pollinated branches contrasts with the idea of a prolifically fruiting plant. E. umbellata seems to serve as a reliable food source for many ecologically and economically significant insects, including native bumble bees (Bombus), the exotic honey bee (Apis mellifera), and armyworm (Mythimna unipuncta), a crop pest.  相似文献   

13.
1. Spatial and temporal availability of pollen helps shape bee foraging behaviour and productivity, which has been studied in great detail at the landscape level, but never in a diverse tropical forest. 2. To study the effect of spatio‐temporal variation in resource distribution on pollen use and productivity, we identified pollen from spatially explicit nest collections of two generalist sweat bees, Megalopta genalis Meade‐Waldo and M. centralis Friese, from Barro Colorado Island, Panama, a 50‐ha forest dynamics plot during the 2007 dry and early wet seasons. Pollen from nests collected in 1998–1999 without spatial information was also identified. 3. Bees used pollen of at least 64 species; many of these occurred in only one collection. The 2007 collections contained pollen of 35 different species, but were dominated by five species, especially Hura crepitans L. and Pseudobombax septenatum (Jacq.) Dugand. 4. Temporal availability, but not distance from nest, influenced flower use at a 50‐ha scale. 5. Body size was not associated with minimum flight distance as inferred from pollen collections. 6. Nest productivity and pollen diversity decreased from the dry to wet seasons, mirroring community‐level availability of floral resources. 7. Results suggest that on a scale of 50 ha, bees are choosing certain host plant species regardless of distance from the nest, but adjusting foraging behaviour opportunistically based on the temporal availability of host flowers.  相似文献   

14.
Little is known of the potential coevolution of flowers and bees in changing, biodiverse environments. Female solitary bees, megachilids and Centris , and their nest pollen provisions were monitored with trap nests over a 17-year period in a tropical Mexican biosphere reserve. Invasion by feral Apis (i.e. Africanized honey bees) occurred after the study began, and major droughts and hurricanes occurred throughout. Honey bee competition, and ostensibly pollination of native plants, caused changes in local pollination ecology. Shifts in floral hosts by native bees were common and driven by plant phylogenetics, whereby plants of the same families or higher taxa were substituted for those dominated by honey bees or lost as a result of natural processes. Two important plant families, Anacardiaceae and Euphorbiaceae, were lost to competing honey bees, but compensated for by greater use of Fabaceae, Rubiaceae, and Sapotaceae among native bees. Natural disasters made a large negative impact on native bee populations, but the sustained presence of Africanized honey bees did not. Over 171 plant species comprised the pollen diets of the honey bees, including those most important to Centris and megachilids (72 and 28 species, respectively). Honey bee pollination of Pouteria (Sapotaceae) plausibly augmented the native bees' primary pollen resource and prevented their decline. Invasive generalist pollinators may, however, cause specialized competitors to fail, especially in less biodiverse environments.  No claim to original US government works. Journal compilation © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 152–160.  相似文献   

15.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

16.
  • Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci.
  • We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents.
  • The flowers of cambuci were self‐incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds.
  • This study describes the first scent‐mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees.
  相似文献   

17.
18.
Changes in agricultural practice across Europe and North America have been associated with declines in wild bee populations. Bee diet breadth has been associated with sensitivity to agricultural intensification, but much of this analysis has been conducted at the categorical level of generalist or specialist, and it is not clear to what extent the level of generalisation within generalist species is also associated with species persistence. We used pollen load analysis to quantify the pollen diets of wild solitary bees on 19 farms across southern England, UK. A total of 72 species of solitary bees were recorded, but only 31 species were abundant enough to allow for formal diet characterisation. The results broadly conformed to existing literature with the majority of species polylectic and collecting pollen from a wide range of plants. Pollen load analysis consistently identified pollens from more plant species and families from each bee species than direct observation of their foraging behaviour. After rarefaction to standardise pollen load sample sizes, diet breadth was significantly associated with frequency of occurrence, with more generalist bees present on more farms than less generalist bees. Our results show that the majority of bee species present on farmland in reasonable numbers are widely variable in their pollen choices, but that those with the broadest diet were present on the greatest number of farms. Increasing the diversity of plants included in agri-environment schemes may be necessary to provide a wider range of pollen resources in order to support a diverse bee community on farmland.  相似文献   

19.
Kenneth M. Olsen 《Oecologia》1996,109(1):114-121
 Assessing the relative contributions to seed set for each of a plant species’ floral visitors provides an indication of the relative influence of these visitors on the plant’s reproductive success. This study examined pollinator activity and seed set in a population of Heterotheca subaxillaris, a species that exhibits a floret dimorphism (heads bearing disk and ray florets), and that is visited by both generalist foragers and specialist bees. Visits by nine bee genera and one genus of skipper were recorded in the study population. During the period of study, these insects varied in their relative abundance, in their foraging activity on a head, and in their pollination effectiveness. The pattern of pollination effectiveness shown by the different pollinators was similar for both floret types, although seed set was higher overall for ray florets. Pollinator importance, calculated as the product of pollination effectiveness and relative abundance, was dictated by a pollinator’s relative abundance. The single specialist bee species observed in the study population proved to have neither higher pollination effectiveness nor higher pollinator abundance than other pollinators. This would suggest that H. subaxillaris is not under strong selective pressure to co-specialize with its specialist visitor. Received: 21 December 1995 / Accepted: 20 June 1996  相似文献   

20.
Despite the nest pollen provisions in Western Argentina are composed only of Prosopis, the fact that the ground-nesting bee Eremapis parvula visits several floral hosts suggested that it is a generalist bee species. In the South American Dry Chaco forest, seven nest aggregations of E. parvula were found during three different spring periods. From 34 to 73 species of floral hosts were recorded around each nest aggregation. However, all nest pollen samples were composed of Prosopis pollen alone, as previously found in nests from Western Argentina. Thus, pollen analysis proved that E. parvula is a specialist bee of Prosopis. The “monolecty” and “narrow oligolecty” pollen specialization categories cannot be differentiated using pollen analysis alone. For this reason, a complementary floral visitation method was used. As several Prosopis species have been reported in floral records, the narrow oligolecty category for E. parvula is supported here. Considering that this exomalopsine is a multivoltine bee, and that flowers of some of the more than seven Prosopis species are always available during spring, synchronization between them in rainy periods is highly probable. Thus, it is unlikely that E. parvula has to forage on alternative pollen hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号