首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Niimura Y 《Carbohydrate research》2006,341(16):2669-2676
Monosialosyl gangliosides from the gills of the Pacific salmon, Oncorhynchus keta, have been prepared by solvent extraction and DEAE-Sephadex column chromatography. The unknown acidic glycolipids (M14 and M15) with slower mobility than GM1a on thin-layer chromatography were separated by Iatrobeads column chromatography and were characterized by compositional analysis, methylation analysis, chemical, and enzymatic degradation, negative-ion LSIMS, and (1)H nuclear magnetic resonance spectroscopy. Both M14 and M15 contained a same oligosaccharide core with isoglobo-, neolacto-, and ganglio-series as follows: [carbohydrate structure: see text]. The only difference between M14 and M15 was in fatty acid acylation. Analysis of the fatty acids indicated a predominance of C24:1 fatty acid in M14 and shorter chain saturated fatty acids, C14:0 and C16:0, in M15.  相似文献   

2.
Two major gangliosides from pig spleen lymphocytes, accounting for 57% of the total lipid-bound sialic acids, were isolated and purified to homogeneity by column chromatography on DEAE-Sephadex and silica gel. They were identified as GM3 (II3Neu5GcLacCer), and GD3 (II3(Neu5Gc)2LacCer), by thin-layer chromatography in comparison with standards and by analysis of the constituent sugars. The major fatty acids of these gangliosides were stearic acid and myristic acid, respectively. In addition to these gangliosides, GD2 and bands comigrating on thin-layer chromatography with authentic GM2, GM1, GD1a and GD1b were found. These compounds also occur in pig peripheral blood lymphocytes, where, however, GD3 represents about 70% of the total lipid-bound sialic acid.  相似文献   

3.
Characterization of ganglioside GM4 lactones isolated from the whale brain   总被引:1,自引:0,他引:1  
Two novel ganglioside lactones were isolated from the brain of Bryde's whale (Balaenoptera edeni) and characterized. These gangliosides migrated above GM4 and were designated M4-1 and M4-2 in the order of location from the bottom of the TLC plate. These gangliosides were converted to GM4 by mild alkali treatment. Although M4-1 and M4-2 contained 1 mol each of N-acetylneuraminic acid and galactose, they behaved as neutral lipids on ion-exchange chromatography. Inner ester linkages were found in these gangliosides by secondary ion mass spectrometry and infrared spectroscopy. Two-dimensional J-correlated proton NMR spectra revealed that an inner ester linkage was formed in M4-1 between the sialic acid carboxyl group and the C-4 hydroxyl group of the galactosyl residue and another inner ester linkage was formed in M4-2 between the sialic acid carboxyl group and the C-2 hydroxyl group of galactose.  相似文献   

4.
Niimura Y  Ishizuka I 《Glycobiology》2006,16(8):729-735
Verots S3 cells derived from the African green monkey kidney were revealed to contain nine types of sulfoglycolipids by incorporating [35S]sulfate. These sulfated glycolipids were separated by DEAE-Sephadex column chromatography and preparative thin-layer chromatography (TLC). The major sulfoglycolipids were characterized using TLC, gas-liquid chromatography (GLC), mass spectrometry, solvolysis, TLC immunostaining, and nuclear magnetic resonance spectra as follows: V1, SM4s (GalCer I3-sulfate); V2, SM3 (LacCer II3-sulfate); V3, SM2a (Gg3Cer II3-sulfate); V4, globopentaosyl ceramide sulfate (Gb5Cer V3-sulfate); V5, (Gg4Cer II3-sulfate, IV3-NeuAc); V6, SB1a (Gg4Cer II3, IV3-bis-sulfate); and V8, (Gg4Cer II3-NeuAc, IV3-sulfate). Both V5 and V8 were sulfated gangliosides comprising both N-acetyl neuraminic acid and sulfate, and this was the first report on V8. A minor component V7 was identified as SM1a (Gg4Cer II3-sulfate) based on its behavior in TLC, GLC, and liquid secondary ion mass spectroscopy. It was postulated that this substance was a precursor of V6 (SB1a) and V5 (Gg4Cer II3-sulfate, IV3-NeuAc), and to date, its presence has not been demonstrated in nature. Another minor component V9 was identified as glucosyl ceramide sulfate based on its migration in TLC and GLC. This renal cell line was shown to be an excellent model for studying the metabolism and function of sulfoglycolipids.  相似文献   

5.
An autoimmune hypothesis for the etiology of Meniere's disease has been proposed. In this study, we focused on gangliosides as potential antigens for autoantibodies in Meniere's disease patients. In an attempt to investigate ganglioside antigens which respond to the serum of patients with Meniere's disease, we analyzed gangliosides of human acoustic neurinomas, and used them as antigens to broadly explore gangliosides that react to serum. All the acoustic neurinoma samples used in the present study showed a similar ganglioside profile on TLC (thin-layer chromatography). For the microscale ganglioside analysis, a newly developed TLC blotting/secondary ion mass spectrometry (SIMS) system together with TLC immunostaining method was employed. Most of the ganglioside bands could be analyzed, and they were identified as GM3, GM2, SPG, GM1a, GD3, S-i (sialyl-i ganglioside) and GD1a. GD1a was the predominant ganglioside and many neolactoseries gangliosides were recognized by immunological analysis. Next, the immune reactivity of serum samples, from patients with Meniere's disease, with the acoustic neurinoma gangliosides was studied by TLC immunostaining. The result showed that five of 11 patients with Meniere's disease and one of eight normal subjects reacted with a specific band, which was identified as S-i by the TLC blotting/SIMS system. The findings of the present study indicate that S-i ganglioside is an autoantigen and possibly involved in the pathogenesis of Meniere's disease.  相似文献   

6.
The gangliosides of carp intestinal mucosa were isolated and analysed by thin-layer chromatography (TLC), TLC immunostaining test, and TLC/secondary ion mass spectrometry (TLC/SIMS). Four species of gangliosides, designated as G-1, G-2, G-3 and G-4, were separated on TLC. The TLC/SIMS analysis of the G-1 ganglioside of carp intestinal mucosa revealed a series of [M-H](-)ions from m/z 1061 to m/z 1131 representing the molecular mass range of GM4-like ganglioside with NeuAc. G-2, G-3 and G-4 gangliosides were analysed by the TLC immunostaining test. G-2 ganglioside was recognised by the monoclonal antibody specific for ganglioside GM1 (AGM-1 monoclonal antibody). However, G-3 ganglioside migrating on TLC between GM3 and GM1 ganglioside was not recognised by anti-GM3 monoclonal antibody and by AGM-1 monoclonal antibody. Furthermore, G-4 ganglioside with a similar TLC mobility as GD1a ganglioside did not show the reactivity to the anti-GD1a monoclonal antibody. In addition using the AGM-1 monoclonal antibody, the expression of GM1 ganglioside in the carp intestinal tissue was studied. GM1 ganglioside was detected on the epithelial cell surface of carp intestinal mucosa.  相似文献   

7.
Synthesis of lysogangliosides   总被引:6,自引:0,他引:6  
The synthesis of gangliosides GM3, GM2, GM1, and GD1a solely lacking the fatty acid moiety, and thus called lysogangliosides in analogy to lysophospholipids, is described. Since a selective elimination of the fatty acid residue has not been achieved as yet, the gangliosides were first subjected to alkaline hydrolysis. By this procedure the fatty acyl as well as the acetyl groups of the sialic acid residue(s) were completely removed. The acetamido group of the N-acetylgalactosamine moiety of the gangliosides GM2, GM1, and GD1a was very little (congruent to 10%) hydrolyzed. In a two-phase system composed of water and ether, the selective protection of the sphingoid amino group was accomplished with a hydrophobic protective group (9-fluorenylmethoxycarbonyl). Lysogangliosides were obtained after re-N-acetylation of the sialooligosaccharide amino group(s) followed by removal of the protecting group. The overall yield was about 30%. The structures of the lysogangliosides were confirmed by chemical analysis as well as negative ion FAB mass spectrometry and 1H NMR spectroscopy. By simple re-N-acylation of lysogangliosides with any labeled fatty acid, labeled gangliosides are now obtainable that are identical with their parent gangliosides except for their labeled fatty acid residue. This has been demonstrated by the synthesis of GM1 with a [1-13C]palmitic acid moiety in its ceramide portion. If desired, double-labeled gangliosides may be obtained by use of labeled acetic anhydride in the synthesis of the lysogangliosides.  相似文献   

8.
Composition of gangliosides from ovine testis and spermatozoa   总被引:1,自引:0,他引:1  
Gangliosides were extracted and purified from ovine testis and ejaculated spermatozoa which contained, respectively, 57 and 9 nmol lipid-bound sialic acid per gram wet weight. Fourteen gangliosides were resolved by thin-layer chromatography of testicular gangliosides, of which eleven were purified in sufficient quantity to enable a complete compositional analysis of the carbohydrate residues to be performed. None of the gangliosides contained fucose, but several contained N-glycolylneuraminic acid as a component of the sialic acid species. Relative migration on thin-layer chromatograms relative to known standards, compositional analysis, and selective degradation by specific enzymes were used as the basis for identification. Testis contained members of the ganglio series (GM1, GD1a, GD1b, GT1b, GQ1b), hematoside series (GM3, GD3), and sialosylparagloboside in the molar ratio of 54:40:6, respectively. Testicular GM3, GM1, GD3, GD1a, GD1b and GT1b ran as double bands on thin-layer chromatography which could be accounted for by observed differences in the fatty acid moiety. In addition, the slower migrating band of each pair contained some or all of its sialic acid residues as N-glycolylneuraminic acid, whereas the faster migrating band contained exclusively N-acetylneuraminic acid, except for GM3 where N-acetylneuraminic acid was the sole species in both bands. Thin-layer chromatography of sperm gangliosides revealed seven bands comigrating with equivalent testicular gangliosides. These coincided with the slower migrating bands of testicular GM3, GM1, GD3, GD1a, both bands of GD1b, and possibly both bands of GT1b. Sperm contained only trace amounts of sialosylparagloboside but, in addition, two unidentified bands which were absent from testis were also observed. The molar ratio of the ganglio series to the hematoside series in sperm was 42:58 with GM3 accounting for 42% of total gangliosides.  相似文献   

9.
It is known that gangliosides, being ubiquitous membrane components, play important roles in cell-cell recognition, differentiation and transmembrane signalling. GM3, GM1 and GD1a were detected in the rat oviduct as major gangliosides by thin-layer chromatography (TLC) analysis. The total amounts of gangliosides from the oviducts at various times after hormone injection were not much changed. In order to identify their distribution and possible changes during ovulation, frozen sections of the rat oviducts were stained with specific monoclonal antibodies (MAbs) against the ganglio-series gangliosides. GM3 and GM1 were expressed in a different manner, but GD1a and other gangliosides were not immunohistochemically detected. In the ampullar region, GM3 was expressed in all the stroma and epithelial cells, but not GM1. GM1 was also not observed in epithelial cells. Staining by anti-GM1 monoclonal antibodies revealed long and minute thread-like structures in some of the stroma cells, whereas anti-GM3 monoclonal antibodies stained the entire cytoplasm, but not the nucleus, of all the stroma and epithelial cells. Other ganglio-series gangliosides, including GD1a, were not detected to some extent in the ampullar region by immunohistochemistry. Thus, these data suggest that GM3 and GM1 are oviduct-specific gangliosides.  相似文献   

10.
In addition to ganglioside GM1b, an unusual and extremely minor ganglioside, GD1 alpha, was efficiently isolated from bovine brain by combination of Q-Sepharose and Iatrobeads column chromatographies. In the course of purification steps, the presence of the sialidase-labile ganglioside was proved by a highly sensitive TLC/enzyme-immunostaining method. The structure was characterized by gas-liquid chromatography, permethylation study, sialidase degradation, immunostaining with specific antibodies, fast atom bombardment-mass spectrometry, and proton magnetic resonance spectrometry. The content of the ganglioside was very small (0.016%) in the total gangliosides. This finding suggests that a synthetic pathway of asialo GM1----GM1b----GD1 alpha may exist in mammalian brains. A monoclonal antibody NA-6 that was obtained by immunizing mice with purified GM1b reacted specifically with GM1b but showed no cross-reactivity with other structurally related gangliosides such as GM1a, GD1a, and so on. Using the method of TLC/immunostaining with NA-6, GM1b was found to be strongly expressed during embryonic days 14-17 in chick brains. Thus, it is assumed that extremely minor gangliosides like GM1b and GD1 alpha found in adult brains are characterized as embryonic molecules.  相似文献   

11.
A simple and rapid method for the preparation of N-methylamides ( - CONHCH3) of sialic acids in gangliosides and biochemical properties of the modified gangliosides are described. The sialic acid carboxyl groups of gangliosides were esterified with CH3I-dimethylsulfoxide, followed by heating with monomethylamine. The modified gangliosides were chemically identified by TLC, IR spectroscopy, GLC-mass spectrometry and NMR spectroscopy. The N-methylamide derivative of GM1 produced a high titer IgG antibody. The antibody weakly cross-reacted with the methylester of GM1 and its reductive derivative but did not react with the intact GM1. A monoclonal antibody (M2590) specific for GM3 did not react with carboxyl-modified GM3 (methylester, N-methylamide, and reduced GM3), but it reacted with modified GM3 which contains the C7-analog of the sialic acid. Clostridium perfringens and Arthrobacter ureafaciens sialidases did not hydrolyze the N-methylamide derivatives, methylesters or reductive derivatives of the gangliosides and, furthermore, these derivatives did not inhibit the actions of these sialidases.  相似文献   

12.
Gangliosides were isolated from Trypanosoma brucei and analyzed by thin-layer chromatography (TLC) and TLC immunostaining test. Four species of gangliosides, designated as G-1, G-2, G-3, and G-4, were separated by TLC. G-1 ganglioside had the same TLC migration rate as GM3. In contrast, G-2, G-3, and G-4 gangliosides migrated a little slower than GM1, GD1a, and GD1b, respectively. To characterize the molecular species of gangliosides from T. brucei, G-1, G-2, G-3, and G-4 gangliosides were purified and analyzed by TLC immunostaining test with monoclonal antibodies against gangliosides. G-1 ganglioside showed the reactivity to the monoclonal antibody against ganglioside GM3. G-2 was recognized by the anti-GM1 monoclonal antibody. G-3 showed reaction with the monoclonal antibody to GD1a. G-4 had the reactivity to anti-GD1b monoclonal antibody. Using 4 kinds of monoclonal antibodies, we also studied the expression of GM3, GM1, GD1a, and GD1b in T. brucei parasites. GM3, GM1, GD1a, and GD1b were detected on the cell surface of T. brucei. These results suggest that G-1, G-2, G-3, and G-4 gangliosides are GM3 (NeuAc alpha2-3Gal beta1-4Glc beta1-1Cer), GM1 (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), GD1a (NeuAc alpha2-3Gal beta1-3GalNAc beta1-4[NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), and GD1b (Gal beta1-3GalNAc beta1-4[NeuAc alpha2-8NeuAc alpha2-3]Gal beta1-4Glc beta1-1Cer), respectively, and also that they are expressed on the cell surface of T. brucei.  相似文献   

13.
Cytosolic Chinese hamster ovary (CHO) cell sialidase has been cloned as a soluble glutathione S-transferase (GST)-sialidase fusion protein with an apparent molecular weight of 69 kD in Escherichia coli. The enzyme has then been produced in mg quantities at 25-L bioreactor scale and purified by one-step affinity chromatography on glutathione sepharose (Burg, M.; Müthing, J. Carbohydr. Res. 2001, 330, 335-346). The cloned sialidase was probed for desialylation of a wide spectrum of different types of gangliosides using a thin-layer chromatography (TLC) overlay kinetic assay. Different gangliosides were separated on silica gel precoated TLC plates, incubated with increasing concentrations of sialidase (50 degreesU/mL up to 1.6 mU/mL) without detergents, and desialylated gangliosides were detected with specific anti-asialoganglioside antibodies. The enzyme exhibited almost identical hydrolysis activity in degradation of GM3(Neu5Ac) and GM3(Neu5Gc). A slightly enhanced activity, compared with reference Vibrio cholerae sialidase, was detected towards terminally alpha(2-3)-sialylated neolacto-series gangliosides IV3-alpha-Neu5Ac-nLc4Cer and VI3-alpha-Neu5Ac-nLc6Cer. The ganglio-series gangliosides G(D1a), G(D1b), and G(T1b), the preferential substrates of V. cholerae sialidase for generating cleavage-resistant G(M1), were less suitable targets for the CHO cell sialidase. The increasing evidence on colocalization of gangliosides and sialidase in the cytosol strongly suggests the involvement of the cytosolic sialidase in ganglioside metabolism on intracellular level by yet unknown mechanisms.  相似文献   

14.
Isolation and characterization of major gangliosides from frog liver   总被引:1,自引:0,他引:1  
Four major gangliosides isolated from frog liver were characterized by compositional analysis involving GLC and GC-MS, methylation analysis, chromium trioxide oxidation, and enzymatic hydrolysis. The results revealed that the most major ganglioside in the tissue was GM4 containing N-acetylneuraminic acid and the others were GM4 containing N-glycolylneuraminic acid, GD1a, and a fucosyl ganglioside which was tentatively assigned to be alpha-galactosyl alpha-fucosyl GM1. This is the first report describing the presence of GM4 containing N-glycolylneuraminic acid. The fatty acids in both GM4 were mainly alpha-hydroxylated, and those in the fucosyl ganglioside were exclusively nonhydroxy fatty acids. The GD1a contained both nonhydroxy and alpha-hydroxy fatty acids in a ratio of about 3:2. The predominant species were 22:0, 23:0, 24:0, and 24:1 in both species of the fatty acids. The long-chain bases of these four gangliosides consisted of C18-sphingosine and C18-phytosphingosine together with significant amounts of C16 to C19 dihydroxy and trihydroxy bases with iso and anteiso structures.  相似文献   

15.
Neutral and acidic glycolipids from the bovine pineal organ and neutral glycolipids from the bovine retina were characterized. The chemical structures of the isolated glycolipids were determined by means of carbohydrate analysis, methylation analysis, enzyme treatment, fatty acid analysis, long chain base analysis, mass spectrometry, NMR spectroscopy, and IR spectroscopy. GM3, GD3, and GT1 were the major bovine pineal organ gangliosides, GD3 accounting for 75% of the total gangliosides. Galactosylceramide, glucosylceramide, and lactosylceramide were found in both the bovine pineal organ and retina. Sulfatide was also present in both tissues. It had already been reported that the major bovine retina ganglioside was GD3 (Handa, S. & Burton, R.M. (1969) Lipids 4, 205-208). The glycolipid patterns of the two tissues were very similar to each other and quite different from those of other tissues.  相似文献   

16.
Gangliosides from brain of an 8 yr old boy with subacute sclerosing leukoencephalitis have been studied in terms of pattern and structure. Thin-layer chromatography showed that both gray and white matter have a highly abnormal pattern, with elevation of the relative proportion of four gangliosides corresponding to minor species in normal brain. The total level of lipid-bound sialic acid, however, was not increased, which indicated a compensating loss of other gangliosides. Two of the proliferating species were monosialogangliosides (G(5) and G(6)) (Korey nomenclature), and two were disialo types (G(2A) and G(3A)). Studies of their carbohydrate structures are described. Nine ganglioside fractions were isolated by preparative TLC in combination with column chromatography, and the fatty acid compositions were determined. Seven contained stearate as the major component, while two (G(3A) and G(6)) had relatively large proportions of oleate and palmitate. Five of the fractions contained two fatty acids of long chain-length and unknown structure.  相似文献   

17.
Glycolipids were purified from the total lipid extract of the testis or milt of a kind of puffer (Fugu rubripes rubripes) by adsorption column chromatography using silicic acid and magnesium silicate and by preparative silica gel TLC. The glycolipids were identified as glucosylceramide (116 mug/g wet tissue) and galactosylceramide 26.7 mug/g). Seminolipid, a sulfagalactolipid specific to mammalian testis was not detected, but the presence of a small amount of sulfatide (15.2 mug/g) was demonstrated. The long-chain bases of both cerebrosides were mainly C18-sphingenine, but in sulfatide, C20-sphingenine was more abundant than C18-sphingenine. In both cerebrosides and sulfatide, the fatty acid compositions were similar, with nervonic acid as the predominant component. Two species of gangliosides were also obtained and were identified as N-acetylgalactosaminyl(1 leads to 4)[N-acetylneuraminyl(2 leads to 3)]galactosyl(1leads to 4)glucosylceramide (59.8 mug/g) and N-acetylneuraminyl(2 leads to 3)galactosyl(1 leads to 4)N-acetylglucosaminyl(1 leads to 3)galactosyl(1 leads to 4)glucosylceramide (45.0 mug/g). The long-chain bases of the two gangliosides consisted of C18-spingenine and C20-sphingenine, and the major fatty acids were palmitic and stearic acids.  相似文献   

18.
We have studied the lipid composition of PC12 pheochromocytoma cells cultured in the presence and absence of nerve growth factor (NGF). Neutral and acidic lipid fractions were isolated by column chromatography on DEAE-Sephadex and analyzed by high-performance thin-layer chromatography (HPTLC). The total lipid concentration was approximately 220 micrograms/mg of protein, and the concentration of neutral glycolipids was 1.6-1.8 microgram/mg of protein for both NGF-treated and untreated cells. The neutral glycolipid fraction contained a major component, which accounted for approximately 80% of the total and which was characterized as globoside on the basis of HPTLC mobility, carbohydrate analysis, fast atom bombardment mass spectrometry, and mild acid hydrolysis. The major fatty acids of globoside were C16:0 (10%), C18:0 (16%), C22:0 (23%), C24:1 (17%), and C24:0 (24%). C18 sphingenine accounted for almost all of the long-chain bases. The other neutral glycolipids were tentatively identified as glucosylceramide (15%), lactosylceramide (4%), and globotriosylceramide (4.5%). The concentration of ganglioside sialic acid was approximately 0.34 and 0.18 microgram/mg of protein for cells grown in the presence and absence of NGF, respectively. Although there was an increase in ganglioside concentration in NGF-treated cells, NGF did not produce any differential effects on the relative proportions of the individual gangliosides. Several of the gangliosides appear to contain fucose, and one of these was tentatively identified as fucosyl-GM1. Brain-type gangliosides of the ganglio series were also detected by an HPTLC-immunostaining method. However, the fatty acid and long chain base compositions of PC12 cell gangliosides (and their TLC mobility) differ from those of brain gangliosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) has been applied primarily to the analysis of glycosphingolipids separated from other complex mixtures by TLC, but it is difficult to obtain quantitative profiling of each glycosphingolipid among the different spots on TLC by MALDI-MS. Thus, the development of a convenient approach that utilizes liquid chromatography/electrospray ionization (LC/ESI)-MS has received interest. However, previously reported methods have been insufficient to separate and distinguish each ganglioside class. Here we report an effective method for the targeted analysis of theoretically expected ganglioside molecular species by LC/ESI tandem mass spectrometry (LC/ESI-MS/MS) in combination with multiple reaction monitoring (MRM). MRM detection specific for sialic acid enabled us to analyze ganglioside standards such as GM1, GM2, GM3, GD1, and GT1 at picomolar to femtomolar levels. Furthermore, other gangliosides, such as GD2, GD3, GT2, GT3, and GQ1, were also detected in glycosphingolipid standard mixtures from porcine brain and acidic glycolipid extract from mouse brain by theoretically expanded MRM. We found that this approach was also applicable to sulfatides contained in the glycosphingolipid mixtures. In addition, we established a method to separate and distinguish regioisomeric gangliosides, such as GM1a and -1b, GD1a, -1b, and -1c, and GT1a, -1b, and -1c with diagnostic sugar chains in the MRM.  相似文献   

20.
Glycosphingolipids of human plasma   总被引:2,自引:0,他引:2  
A number of glycosphingolipids, including 10 gangliosides, not previously identified in human plasma have been characterized. The plasma contains 2 micrograms of lipid-bound sialic acid/ml plasma and 54% of the gangliosides are monosialo, 30% disialo, 10% trisialo, and 6% tetrasialo. Individual glycosphingolipids were purified by high-performance liquid chromatography and thin-layer chromatography, and were characterized on the basis of their chromatographic mobility, carbohydrate composition, hydrolysis by glycosidases, methylation analysis, and immunostaining with anti-glycosphingolipid antibodies. The monosialogangliosides were identified as GM3, GM2, sialosyl(2-3)- and sialosyl(2-6)lactoneotetraosylceramides, sialosyllacto-N-nor-hexaosylceramide, and sialosyllacto-N-isooctaosylceramide. The major gangliosides in the polysialo fractions contained a ganglio-N-tetraose backbone and were identified as GD3, GD1a, GD1b, and GQ1b. The most abundant neutral glycosphingolipids were glucosyl, lactosyl, globotriaosyl, globotetraosyl and lactoneotetraosylceramides. The other neutral glycosphingolipids, tentatively identified by immunostaining with monoclonal antibodies, contained H1, Lea, Leb, and lacto-N-fucopentose III (X hapten) structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号