首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dahms NM  Olson LJ  Kim JJ 《Glycobiology》2008,18(9):664-678
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.  相似文献   

2.
A highly specific enzyme-linked immunosorbent assay for quantitation of the Mr 46000 Da and Mr 300000 Da mannose 6-phosphate receptors was developed. The assay allows to detect ng amounts of human mannose 6-phosphate receptors. Analysis of human cells and tissues revealed significant differences in their contents of the two mannose 6-phosphate receptors, normalized for total cell protein. The ratio of the two mannose 6-phosphate receptors also differed among cells and tissues, suggesting that their steady state concentrations are regulated independently.  相似文献   

3.
Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors   总被引:19,自引:0,他引:19  
Proliferin is a prolactin-related glycoprotein secreted by proliferating mouse cell lines and by mouse placenta. In an attempt to identify target sites for proliferin action, we looked for proliferin receptors in murine fetal and maternal tissues during pregnancy using proliferin purified from the conditioned medium of a constructed Chinese hamster ovary cell line carrying amplified copies of proliferin cDNA. Purified proliferin bound to membrane preparations from fetal or maternal liver and from placenta with a Kd of 1 to 2 nM. The amount of proliferin bound per microgram of membrane protein varied markedly during pregnancy; maximal binding to day 16 fetal liver membranes was approximately 25 times that to liver membranes from adult animals. Binding to fetal and maternal receptors was specifically and completely inhibited by mannose 6-phosphate, with half-maximal inhibition at 10 microM. Furthermore, non-glycosylated proliferin did not inhibit the binding of the glycosylated protein. A approximately 300 Kd proliferin receptor was purified from the liver of pregnant mice using a proliferin affinity column and elution with mannose 6-phosphate. This receptor reacted with antibodies directed against the rat cation-independent mannose 6-phosphate receptor. We conclude that 1) proliferin secreted by cultured cell binds to cation-independent mannose 6-phosphate receptors and therefore may be a lysosomal protein or targeted to lysosomes, and 2) the concentration or activity of mannose 6-phosphate receptors in murine fetal and maternal liver and in placenta is regulated during pregnancy.  相似文献   

4.
We have analyzed the surface polarity of both the cation-independent (CI-MPR) and the cation-dependent (CD-MPR) mannose 6-phosphate receptors in the epithelial Madin-Darby canine kidney (MDCK) cell line grown on polycarbonate filters. The surface localization was studied by plasma membrane domain-specific surface labeling methods and by confocal microscopy using MPR-specific antibodies. The CI-MPR was shown to be exclusively present on the basolateral cell surface. In contrast, the CD-MPR was expressed neither apically nor basolaterally. However, an intracellular pool of CD-MPR could be detected. In MDCKII-RCAr cells, cell surface CI-MPR was shown to recycle between the basolateral plasma membrane and the trans-Golgi network. After exogalactosylation, cell surface CI-MPR acquired sialic acid residues in a time-dependent manner. Furthermore, the basolateral CI-MPR was shown to be functional. Lysosomal enzymes, bearing the mannose 6-phosphate recognition marker, were taken up from the basolateral medium and endocytosed into the cells. Uptake of lysosomal enzymes from the apical side was insignificant and not MPR mediated. These results extend previous immunoelectron microscopic studies on the intracellular polarity of the CI-MPR (Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G. (1989) J. Cell Biol. 109, 3259-3272) which showed that the CI-MPR was present in basolateral early endosomes and in late endosomes but absent from apical early endosomes.  相似文献   

5.
The receptor for asialoglycoproteins (ASGPR) was localized in human hepatoma Hep G2 cells by means of quantitative immunoelectron microscopy. Without ligand added to the culture medium, we found 34% of the total cellular receptors on the plasma membrane, 37% in compartment of uncoupling receptor and ligand (CURL), and 21% in a trans-Golgi reticulum (TGR) that was defined by the presence of albumin after immuno-double labeling. A small percent of the ASGPR was associated with coated pits, the Golgi stacks, and lysosomes. After incubation of the cells with saturating concentrations of the ligand asialo-orosomucoid (ASOR), the number of cell surface receptors decreased to 20% of total cellular receptors, whereas the receptor content of CURL increased by a corresponding amount to 50%. The ASGPR content of TGR remained constant. In contrast, after treatment of the cells with 300 microM of the weak base primaquine (PMQ), cell surface ASGPR had decreased dramatically to only 4% of total cellular receptors whereas label in the TGR had increased to 42%. ASGPR labeling of CURL increased only to 47%. The labeling of other organelles remained unchanged. This affect of PMQ was independent of the presence of additional ASOR. Implications for the intracellular pathway of the ASGPR are discussed.  相似文献   

6.
Two asialoglycoprotein receptor polypeptides in human hepatoma cells   总被引:15,自引:0,他引:15  
Two cDNA clones isolated from a HepG2 lambda gt11 library encode the classical asialoglycoprotein receptor, H1, as well as a homologous membrane glycoprotein, H2 (Spiess, M., and Lodish, H.F. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 6465-6469). To study the relationship of H2 to H1 and its possible role in receptor-mediated endocytosis of desialyated glycoproteins, we generated anti-peptide antibodies that are specific for each polypeptide. As judged by metabolic labeling of HepG2 cells and specific immunoadsorption, the biosynthesis of H2 is similar to H1 (Schwartz, A.L., and Rup, D. (1983) J. Biol. Chem. 258, 11249-11255); H2 is synthesized as a 43,000-dalton precursor polypeptide containing high mannose-type oligosaccharides, that is processed to a 50,000-dalton mature glycoprotein containing complex-type oligosaccharides. Both H1 and H2 have a half-life of approximately 12 h. Trypsin and neuraminidase digestion of intact cells at 4 and 12 degrees C was used to determine that, at steady state, 50-60 percent of both H1 and H2 are on the cell surface. Furthermore, all of the H2 molecules were digested by extracellular neuraminidase in 1 h at 37 degrees C, indicating that all gain access to the plasma membrane. Both H1 and H2 were purified to homogeneity when Triton X-100-solubilized membrane proteins from [35S]cysteine-labeled cells were subjected to affinity chromatography on galactose-agarose. Since we cannot detect a complex between mature H1 and H2, H2 must be a galactose-binding protein. Both quantitative immunoprecipitation of each polypeptide from HepG2 cells and the recovery of purified H1 and H2 from galactose-agarose affinity chromatography indicate that there is 5-6 times more H1 relative to H2. That H2 is a minor species, compared to H1, might explain why it was not observed until a specific antibody was utilized.  相似文献   

7.
Cytotoxic T lymphocytes (CTL) and natural killer cells secrete granzymes to kill infected or transformed cells. The mannose 6-phosphate receptor (Mpr) 300 on target cells has been reported to function as receptor for secreted granzyme B. Using lymphoblasts and mouse embryonal fibroblast lines from Mpr300 and Mpr46 knockout mice, we show here that both receptors are not essential for CTL-induced apoptosis. Similarly, cells exposed to either monomeric granzyme B or granzyme B-serglycin complexes readily internalize the granzyme and undergo apoptosis in the absence of Mpr300 and Mpr46. Further, no colocalization of granzyme B and Mpr300 could be observed in target cells after internalization. In conclusion, these results strongly argue against an Mpr300- or Mpr46-dependent pathway of granzyme-mediated killing and provide new insight in the internalization of monomeric and complexed granzyme B.  相似文献   

8.
Mannose 6-phosphate is an important recognition site involved in transport of newly synthesized lysosomal enzymes from the endoplasmic reticulum to lysosomes. The current study is the first demonstration of functional mannose phosphate receptors in macrophages. The receptor appears to be similar in many respects to that expressed in fibroblasts. Binding at 4 degrees C of a mannose-6-P-containing ligand, alpha-mannosidase from Dictyostelium discoideum, was specific and saturable (KD = 1.6 nM). In the presence of permeabilizing agents (saponin and digitonin), macrophage mannose-6-P receptors gave a distribution of 15-20% on the surface and 80-85% inside. Uptake studies gave a Kuptake value of 4.9 nM. Mannose-6-P, Hansenula holstii phosphomannan, and fructose 1-phosphate were effective inhibitors of alpha-mannosidase uptake. Inhibitors of mannose uptake, such as beta-glucuronidase, mannose-bovine serum albumin, fucose-bovine serum albumin, or mannan had no effect on alpha-mannosidase uptake. Likewise, an inhibitor (fucoidin) of the macrophage receptor which recognizes negatively charged proteins did not inhibit alpha-mannosidase uptake. Uptake was linear over 90 min and inhibited by chloroquine, suggesting that surface receptors recycle. These data demonstrate that macrophages contain receptors which specifically recognize mannose-6-P units and are distinct from the well characterized mannose receptors. The finding that the mannose-6-P receptors play a role at the surface, together with the fact that most of the receptors are intracellular (similar to the mannose receptor) suggests that both carbohydrate receptors play a regulatory role at the surface and intracellularly in transport of lysosomal enzymes.  相似文献   

9.
Mannose 6-phosphate receptor proteins mediate transport of lysosomal enzymes to lysosomes in eukaryotes. Two receptors designated as MPR 300 and MPR 46 based on their apparent molecular mass have been well studied from human and bovine liver. In humans, it has been shown that the receptors are present in different concentrations in different tissues. In the present study, MPR 300 and MPR 46 were purified from goat liver by phosphomannan affinity chromatography, and polyclonal antibodies were raised in rabbits. MPR 300 receptor specific antibodies have been purified from the antiserum using a goat-MPR 300-receptor gel. Using this affinity-purified antibody and the antiserum to goat MPR 46, as well as an affinity-purified MSC1 antibody that is specific for MPR 46, we developed an ELISA method to quantify both the receptors. The receptors could be measured in the concentration range of 1-10 ng using ELISA. The receptors could be quantified from membrane extracts of different tissues of goat and chicken using this method.  相似文献   

10.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

11.
The structural requirements for oligomerization and the generation of a functional mannose 6-phosphate (Man-6-P) binding site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) were analyzed. Chemical cross-linking studies on affinity-purified CD-MPR and on solubilized membranes containing the receptor indicate that the CD-MPR exists as a homodimer. To determine whether dimer formation is necessary for the generation of a Man-6-P binding site, a cDNA coding for a truncated receptor consisting of only the signal sequence and the extracytoplasmic domain was constructed and expressed in Xenopus laevis oocytes. The expressed protein was completely soluble, monomeric in structure, and capable of binding phosphomannosyl residues. Like the dimeric native receptor, the truncated receptor can release its ligand at low pH. Ligand blot analysis using bovine testes beta-galactosidase showed that the monomeric form of the CD-MPR from bovine liver and testes is capable of binding Man-6-P. These results indicate that the extracytoplasmic domain of the receptor contains all the information necessary for ligand binding as well as for acid-dependent ligand dissociation and that oligomerization is not required for the formation of a functional Man-6-P binding site. Several different mutant CD-MPRs were generated and expressed in X. laevis oocytes to determine what region of the receptor is involved in oligomerization. Chemical cross-linking analyses of these mutant proteins indicate that the transmembrane domain is important for establishing the quaternary structure of the CD-MPR.  相似文献   

12.
Mannose 6-phosphate receptor deficient mice were generated by crossing mice carrying null alleles for Igf2 and the 300 kDa and 46 kDa mannose 6-phosphate receptors, Mpr300 and Mpr46. Pre- and perinatal lethality of mice nullizygous for Igf2, Mpr300 and Mpr46 was increased. Triple deficient mice surviving the first postnatal day had normal viability and developed a phenotype resembling human I-cell disease. The triple deficient mice were characterized by dwarfism, facial dysplasia, waddling gait, dysostosis multiplex, elevated lysosomal enzymes in serum and histological signs of lysosomal storage predominantly in fibroblasts, but also in parenchymal cells of brain and liver. A paternally inherited Mpr300 wild type allele that is normally inactive in mice due to imprinting was reactivated in some tissues of mice lacking IGF II and MPR 46 and carrying a maternal Mpr300 null allele. Inspite of the partial reactivation the phenotype of these mice was similar to that of triple deficient mice.  相似文献   

13.
The cation-independent mannose 6-phosphate receptor (MPRCI) functions in the packaging of both newly made and extracellular lysosomal enzymes into lysosomes. The subcellular location of MPRCI reflects these two functions; receptor is found in the Golgi complex, in endosomes, and on the cell surface. To learn about the intracellular pathway followed by surface receptor and to study the relationship between the receptor pools, we examined the entry of the surface MPRCI into Golgi compartments that contain sialyltransferase. Sialic acid was removed from surface-labeled K562 cultured human erythroleukemia cells by neuraminidase treatment. When the cells were returned to culture at 37 degrees C, surface MPRCI was resialylated by the cells with a half-time of 1-2 h. Resialylation was inhibited by reduced temperature, a treatment that allows surface molecules to reach endosomes but blocks further transport. These results indicate that surface MPRCI is transported to the sialyltransferase compartment in the Golgi complex. After culture at 37 degrees C, a small fraction (10-20%) of the resialylated receptor was found on the cell surface. Because a similar fraction of the total receptor pool is found on the cell surface, it is likely that cell surface MPRCI mixes with the cellular pool after resialylation. These data also support the idea that extracellular and newly made lysosomal enzymes are transported to lysosomes through a common compartment.  相似文献   

14.
We have isolated cDNA clones encoding the entire sequence of the bovine 46 kd cation-dependent mannose 6-phosphate (CD Man-6-P) receptor. Translation of CD Man-6-P receptor mRNA in Xenopus laevis oocytes results in a protein that binds specifically to phosphomannan-Sepharose, thus demonstrating that our cDNA clones encode a functional receptor. The deduced 279 amino acid sequence reveals a single polypeptide chain that contains a putative signal sequence and a transmembrane domain. Trypsin digestion of microsomal membranes containing the receptor and the location of the five potential N-linked glycosylation sites indicate that the receptor is a transmembrane protein with an extracytoplasmic amino terminus. This extracytoplasmic domain is homologous to the approximately 145 amino acid long repeating domains present in the 215 kd cation-independent Man-6-P receptor.  相似文献   

15.
《The Journal of cell biology》1988,107(6):2491-2501
The intracellular distributions of the cation-independent mannose 6- phosphate receptor (MPR) and a 120-kD lysosomal membrane glycoprotein (lgp120) were studied in rat hepatoma cells. Using quantitative immunogold cytochemistry we found 10% of the cell's MPR located at the cell surface. In contrast, lgp120 was not detectable at the plasma membrane. Intracellularly, MPR mainly occurred in the trans-Golgi reticulum (TGR) and endosomes. lgp120, on the other hand, was confined to endosomes and lysosomes. MPR was present in both endosomal tubules and vacuoles, whereas lgp120 was confined to the endosomal vacuoles. In cells incubated for 5-60 min with the endocytic tracer cationized ferritin, four categories of endocytic vacuoles could be discerned, i.e., vacuoles designated MPR+/lgp120-, MPR+/lgp120+, MPR-/lgp120+, and vacuoles nonimmunolabeled for MPR and lgp120. Tracer first reached MPR+/lgp120-, then MPR+/lgp120+, and finally MPR-/lgp120+ vacuoles, which are assumed to represent lysosomes. To study the kinetics of appearance of endocytic tracers in MPR-and/or lgp120-containing pools in greater detail, cells were allowed to endocytose horse-radish peroxidase (HRP) for 5-90 min. The reduction in detectability of MPR and lgp120 antigenicity on Western blots, due to treatment of cell homogenates with 3'3-diaminobenzidine, was followed in time. We found that HRP reached the entire accessible pool of MPR almost immediately after internalization of the tracer, while prolonged periods of time were required for HRP to maximally access lgp120. The combined data suggest that MPR+/lgp120+ vacuoles are endocytic vacuoles, intermediate between MPR+/lgp120-endosomes and MPR-/lgp120+ lysosomes, and represent the site where MPR is sorted from lgp120 destined for lysosomes. We propose that MPR is sorted from lgp120 by selective lateral distribution of the receptor into the tubules of this compartment, resulting in the retention of lgp120 in the vacuoles and the net transport of lgp120 to lysosomes.  相似文献   

16.
17.
Two mannose 6-phosphate receptors, cation-dependent and -independent receptors (CDMPR and CIMPR), play an important role in the intracellular transport of lysosomal enzymes. To investigate functional differences between the two in vivo, their distribution was examined in the rat liver using immunohistochemical techniques. Positive signals corresponding to CIMPR were detected intensely in hepatocytes and weakly in sinusoidal Kupffer cells and interstitial cells in Glisson's capsule. In the liver acinus, hepatocytes in the perivenous region showed a more intense immunoreactivity than those in the periportal region. On the other hand, positive staining of CDMPR was detected at a high level in Kupffer cells, epithelial cells of interlobular bile ducts, and fibroblast-like cells, but the corresponding signal was rather weak in hepatocytes. In situ hybridization analysis also revealed a high level of expression of CIMPR mRNAs in hepatocytes and of CDMPR mRNA in Kupffer cells. By double immunostaining, OX6-positive antigen-presenting cells in Glisson's capsule were co-labeled with the CDMPR signal but were only faintly stained with anti-CIMPR. These different distribution patterns of the two MPRs suggest distinct functional properties of each receptor in liver tissue.  相似文献   

18.
The interaction of the bovine cation-independent mannose 6-phosphate receptor with a variety of phosphorylated ligands has been studied using equilibrium dialysis and immobilized receptor to measure ligand binding. The dissociation constants for mannose 6-phosphate, pentamannose phosphate, bovine testes beta-galactosidase, and a high mannose oligosaccharide with two phosphomonoesters were 7 X 10(-6) M, 6 X 10(-6) M, 2 X 10(-8) M, and 2 X 10(-9) M, and the mol of ligand bound/mol of receptor monomer were 2.17, 1.85, 0.9, and 1.0, respectively. We conclude that the cation-independent mannose 6-phosphate receptor has two mannose 6-phosphate-binding sites/polypeptide chain.  相似文献   

19.
The two known mannose 6-phosphate receptors (MPR 46 and MPR 300) mediate the transport of mannose 6-phosphate-containing lysosomal proteins to lysosomes. Endocytosis of extracellular mannose 6-phosphate ligands can only be mediated by MPR 300. Neither type of MPR appears to be sufficient for targetting the full complement of lysosomal enzymes to lysosomes. The complements of lysosomal enzymes transported by either of the two receptors are distinct but largely overlapping. Chimeric receptors were constructed in which the transmembrane and cytoplasmic domains of the two receptors were systematically exchanged. After expression of the chimeric receptors in cells lacking endogenous MPRs the binding of ligands, the subcellular distribution and the sorting efficiency for lysosomal enzymes were analyzed. All chimeras were functional, and their subcellular distribution was similar to that of wild type MPRs. The ability to endocytose lysosomal enzymes was restricted to receptors with the lumenal domain of MPR 300. The efficiency to sort lysosomal enzymes correlated with the lumenal and cytoplasmic domains of MPR 300. In contrast to the wild type receptors, a significant fraction of most of the chimeric receptors was misrouted to lysosomes, indicating that the signals determining the routing of MPRs have been fitted for the parent receptor polypeptides.  相似文献   

20.
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号