首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transposon Tn2555 was isolated from a clinical E. coli strain carries the genes for sucrose utilization. Previously it was shown that Tn2555 is very unstable and undergoes structural rearrangements with a high frequency. Several deletion derivatives of Tn2555 and one with an inversion of the internal segment were found. They form the Tn2555 transposon family. This paper describes further structural and functional analysis of Tn2555. In the course of the experiments on pBR325 (Mob-) mobilization by conjugative RP4 derivatives, containing Tn2555 family elements, it was found, that all of them induce cointegrate formation. Some of these cointegrates were able to dissociate in rec+ and recA E. coli cells. Restriction endonuclease analysis of the resulting plasmids have shown, that among them were the end products of the Tn2555 transposition from RP4 to pBR325. Besides, the pBR325 derivatives, containing a discrete DNA segment of approximately 800 b.p., originating from Tn2555, were found. The segment can transpose from pBR325 to RP4 indicating that it is an insertion sequence. This new IS-element was designated IS286. The size and the genetic properties of IS286 resemble those of the IS1 element. However restriction analysis and Southern hybridization data show no significant homology between IS286 and IS1. It was found that the Tn2555 family elements are flanked by directly repeated IS286. One of them (Tn2555.3) contains an additional copy of IS286 in its internal region.  相似文献   

2.
Tn5-derived mutants of the gamma-hexachlorocyclohexane-degrading bacterium Sphingomonas paucimobilis UT26 were genetically characterized, and an endogenous insertion sequence (IS) which belongs to the IS1380 family was identified. The IS, named ISsp1, existed as multi copies in UT26, and its transposition appeared to be activated during the process of Tn5-mutagenesis. It was found that transposon mutagenesis can cause endogenous mutations.  相似文献   

3.
In order to elucidate the structural features of the transposon Tn9', representative of the Tn9 family, which define the ability of the transposon to produce unstable cointegrates, we have obtained a derivative of this transposon carrying a deletion in its central region. The deletion in the obtained transposon delta Tn9' covers a DNA segment of about 50 bp in length, occupying the most distal position in relation to the cat gene, at its junction with the right copy of the IS1. The structure and stability of the IS1/delta Tn9'-mediated cointegrates between the plasmids pDK57.1 (pBR322::delta Tn9') and pRP3.1, a deletion derivative of RP1, have been studied. The three types of cointegrates were found. Those of the type I are predominantly formed, due to the left copy of the IS1 which in delta Tn9' occupies proximal position to the promoter of the cat gene. These cointegrates contain three copies of IS1 and are of high stability. The cointegrates of the type II contain two entire copies of delta Tn9' (i.e. four copies of IS1) as well as the structures of the type II, representing the cointegrate equivalent of inverse transposition and also containing four copies of IS1. Cointegrates of the type II and III dissociate efficiently in the rec+ cells but, in contrast to the cointegrates mediated by the original transposon Tn9', are unable to dissociate efficiently in the recA- cells. It was concluded that a DNA segment in the central region of Tn9' may be essential for the expression of the IS1-specific resolvase encoded by the right copy of IS1.  相似文献   

4.
Earlier we have studied unstable dissociating IS1/Tn9'-mediated cointegrates between the plasmids pDK57 (pBR322::Tn9') and pRP3.1, a deletion derivative of RP1, and two types of such cointegrates containing three and four copies of IS1 were revealed. In the present paper we studied the structure of stable IS1/Tn9'-mediates cointegrates and simple insertions formed by interaction between the plasmids pDK57 and pRP3.1 in the E. coli recA- cells. It was shown, that the stable cointegrates were formed by insertion of pDK57 in different loci of pRP3.1 and these cointegrates contain three copies of IS1, i.e. one copy of IS1 and a copy of Tn9' at the junction of the two replicons. The cointegrates are formed predominantly due to the activity of the left copy of Tn9', which occupies a proximal position in regard to the promoter of the cat gene. It was found that the integration of pDK57 into the kan gene region of pRP3.1 leading to the formation of the KmS cointegrates occurs only in one of the two possible orientations. Meanwhile the insertions of the transposon Tn9' into the kan region of pRP3.1 leading to simple insertions occurs in the orientation opposite to the orientation of the transposon in the KmS cointegrates. It is proposed that simple insertions are not the products of direct transposition of Tn9', but they are formed from unstable cointegrates under the action of IS1-specific resolvase.  相似文献   

5.
The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.  相似文献   

6.
The citrate utilization (Cit+) transposon Tn3411 was shown to be flanked by directly repeated sequences (IS3411L and IS3411R) by restriction enzyme analysis and electron microscope observation. Cit- deletion mutants were frequently found to be generated in pBR322::Tn3411 by intramolecular recombination between the two copies of IS3411. The flanking IS3411 elements of Tn3411 were shown to be functional insertion sequences by Tn3411-mediated direct and inverse transposition. Tn3411-mediated inverse transposition from pBR322::Tn3411 to the F-plasmid derivative pED100 occurred more efficiently than that of direct transposition of the Cit+ determinant. This was thought to be due to the differential transposability of IS3411L and IS3411R in the transposition process. The frequency of transposition of IS3411 marked with a chloramphenicol resistance determinant was much higher than IS3411-mediated cointegrate formation, suggesting that replicon fusions are not essential intermediates in the transposition process of Tn3411 or IS3411. Spontaneous deletions occurred with high frequency in recA hosts. The spontaneous deletion promoted by homologous recombination between two IS3411 elements in Tn3411 was examined with deletion mutants.  相似文献   

7.
Tn602: A naturally occurring relative of Tn903 with direct repeats   总被引:2,自引:0,他引:2  
We report the characterization of Tn602, a transposon encoding resistance to kanamycin and related aminoglycosides present on the R-plasmid pGD10. Tn602 is highly homologous to the previously characterized Tn903, present on the R-plasmid R6, in that it consists of a gene for aminoglycoside-phosphotransferase-3'-I (homologous to that of Tn903) flanked by copies of an IS-element homologous to IS903. Tn602 differs from Tn903 in the following respects: the flanking IS-elements (IS602) are in direct rather than inverted orientation as in Tn903; the fusion points between the IS-elements and the central region are different from those in Tn903; and several sequence changes, detected by the loss and acquisition of restriction sites, show the two repeats of IS602 to be nonidentical and different from IS903, IS102, and IS903.B. These structural details suggest that Tn602 and Tn903 evolved separately from related modules.  相似文献   

8.
We describe a novel type of transposon in the tetracycline resistance plasmid pYM103, a derivative of pSC101 carrying a single copy of an insertion element IS102. The new transposons we found were identified as DNA segments, approximately 6 kb (Tn1021) and 10 kb (Tn1022) in length, able to mediate the cointegration of pYM1O3 with plasmid Col E1. The resulting cointegrate contains either of these pYM1O3 segments duplicated in a direct orientation at the junctions of the parent plasmids. A direct duplication of a 9 bp sequence at the target site in Col E1 is found at the junctions for cointegration. Both transposons have IS1O2 at one end and also contain different lengths of the pYM103 DNA adjacent to IS102, including the tetracycline resistance gene. Each transposon contains terminal inverted repeats of a short nucleotide sequence. These results and the fact that IS102 can itself mediate plasmid cointegration, giving rise to a duplication of a 9 bp target sequence, indicate that IS102 is responsible for generation of Tn1021 and Tn1022. They are quite different from the common IS-associated transposons, which are always flanked by two copies of an IS element, and may be similar to transposons such as those of the Tn3 family and phage Mu.  相似文献   

9.
S Iida  I Kulka  J Meyer    W Arber 《Journal of bacteriology》1987,169(4):1447-1453
Tn2653 contains one copy of the tet gene and two copies of the cat gene derived from plasmid pBR325 and is flanked by inverted repeats of IS1. Transposed onto the P1-15 prophage, it confers a chloramphenicol resistance phenotype to the Escherichia coli host. Because the prophage is perpetuated as a plasmid at about one copy per host chromosome, the host cell is still tetracycline sensitive even though P1-15 is carrying one copy of the tet gene. We isolated P1-15::Tn2653 mutants conferring a tetracycline resistance phenotype, in which the whole transposon and variable flanking P1-15 DNA segments were amplified. Amplification was most probably preceded by IS1-mediated DNA rearrangements which led to long direct repeats containing Tn2653 sequences and P1-15 DNA. Subsequent recombination events between these direct repeats led to amplification of a segment containing the tetracycline resistance gene in tandem arrays.  相似文献   

10.
Characterization of in vitro constructed IS30-flanked transposons   总被引:1,自引:0,他引:1  
R Stalder  W Arber 《Gene》1989,76(2):187-193
In order to facilitate functional studies on the mobile genetic element IS30, a resident of the Escherichia coli chromosome, transposon structures with two copies of IS30 flanking the chloramphenicol-resistance gene cat were constructed in vitro. Transposons containing IS30 as direct repeats (Tn2700 and Tn2702) transpose from multicopy plasmids into the genome of phage P1-15, thus giving rise to special transduction for cat with frequencies between 10(-5) and 10(-8)/plaque-forming unit. In contrast, transposon structures with IS30 in inverted repeat (Tn2701 and Tn2703) showed no detectable (less than 10(-9] transposition activity in vivo. By restriction analysis, two insertion sites of Tn2700 and Tn2702 on the phage P1-15 genome were indistinguishable from those observed earlier with a single copy of the IS30 element. These two insertion sites were used several times independently by Tn2700 and Tn2702. This confirms the non-random target selection by the element and it indicates that transposition of Tn2700 and Tn2702 follows the same rules as that of IS30.  相似文献   

11.
Insertion element IS1 and IS1-based transposon Tn9 generate cointegrates (containing vector and target DNAs joined by duplicate copies of IS1 or Tn9) and simple insertions (containing IS1 or Tn9 detached from vector sequences). Based on studies of transposon Tn5 we had proposed a conservative (non-replicative) model for simple insertion. Others had proposed that all transposition is replicative, occurring in a rolling circle structure, and that the way DNA strands are joined when replication terminates determines whether a simple insertion or a cointegrate is formed.--We selected for the transposition of amp and cam resistance markers from pBR322::Tn9 plasmids to an F factor in recA-E. coli and identified products containing three and four copies of IS1, corresponding to true cointegrates (from monomeric plasmids), and simple insertions (from dimeric plasmids). The simple insertions with four copies of IS1 outnumbered those with three by a ratio of about 3:1, whereas true cointegrates containing three copies of IS1 were more numerous than those with four.--A straightforward rolling circle model had predicted that the simple insertions containing three copies of IS1 should be more frequent than those with four. Because we obtained the opposite result we propose that simple insertions only arise when the element fails to replicate or if replication starts but then terminates prematurely. The two classes of products, simple insertions and cointegrates, reflect alternative conservative and replicative fates, respectively, of an early intermediate in transposition.  相似文献   

12.
C J Wrighton  P Strike 《Plasmid》1987,17(1):37-45
The kanamycin resistance determinant of the drug resistance plasmid NTP16 has been characterized by DNA sequencing and has been shown to possess all of the structural features of a transposable element. It is made up of a 1040-bp central region encoding a protein identical to the aminoglycoside 3'-phosphotransferase of Tn903, flanked by direct repeats of an element identical to IS26. This novel transposon has been designated Tn4352. Analysis of the host sequences flanking the transposon reveal that they are derived from a Tn3-like element, and contain no 8 base pair target size duplications which are normally created by the insertion of IS26-like elements. Comparison to the Tn3 sequence shows that the flanking sequences are noncontiguous within Tn3, with the clear implication that NTP16 has evolved from a similar plasmid encoding only ampicillin resistance (presumably NTP1) by the insertion of Tn4352 into the Tn3-like element, followed by a substantial deletion. The sequence analysis suggests that the initial insertion was into the tnpR gene of the ampicillin transposon, followed by a deletion extending to a specific site within tnpA.  相似文献   

13.
The extent and nature of tetracycline resistance in bacterial populations of two apple orchards with no or a limited history of oxytetracycline usage were assessed. Tetracycline-resistant (Tc(r)) bacteria were mostly gram negative and represented from 0 to 47% of the total bacterial population on blossoms and leaves (versus 26 to 84% for streptomycin-resistant bacteria). A total of 87 isolates were screened for the presence of specific Tc(r) determinants. Tc(r) was determined to be due to the presence of Tet B in Pantoea agglomerans and other members of the family Enterobacteriacae and Tet A, Tet C, or Tet G in most Pseudomonas isolates. The cause of Tc(r) was not identified in 16% of the isolates studied. The Tc(r) genes were almost always found on large plasmids which also carried the streptomycin resistance transposon Tn5393. Transposable elements with Tc(r) determinants were detected by entrapment following introduction into Escherichia coli. Tet B was found within Tn10. Two of eighteen Tet B-containing isolates had an insertion sequence within Tn10; one had IS911 located within IS10-R and one had Tn1000 located upstream of Tet B. Tet A was found within a novel variant of Tn1721, named Tn1720, which lacks the left-end orfI of Tn1721. Tet C was located within a 19-kb transposon, Tn1404, with transposition genes similar to those of Tn501, streptomycin (aadA2) and sulfonamide (sulI) resistance genes within an integron, Tet C flanked by direct repeats of IS26, and four open reading frames, one of which may encode a sulfate permease. Two variants of Tet G with 92% sequence identity were detected.  相似文献   

14.
Tn1935, a 23.5-kb transposon mediating resistance to ampicillin, kanamycin, mercury, spectinomycin, and sulfonamide was isolated from pZM3, an IncFIme virulence plasmid from Salmonella wien. Tn1935 possesses the entire sequence of Tn21 and contains two additional DNA segments of 0.95 and 2.7 kb carrying the ampicillin and kanamycin resistance genes, respectively. The latter is part of a composite element since it is flanked by two IS15-like insertion sequences (IS1936) in direct orientation. IS1936 is about 800 bp long and is closely related to IS15 delta, IS26, IS46, IS140, and IS176. Functional analysis of IS1936-mediated cointegrates shows that both insertion sequences are active and able to form cointegrates at the same frequency. Resolution of the cointegrates requires the presence of the host Rec system. The presence of the composite IS1936-element within Tn1935 supports the hypothesis that multidrug resistance transposons evolved by insertion of antibiotic determinants which are themselves transposable.  相似文献   

15.
The numbers of chromosomal copies of the insertion sequence IS1 in strains of Salmonella typhimurium (0 to 8 copies), Shigella sonnei (56 copies), and Shigella flexneri (41 copies) isolated in Mexico City, Mexico, were similar to those reported for these genera isolated in other countries. Of the 11 Shigella strains studied, all carried several small plasmids; however, in only one of these strains did a small plasmid contain IS1, IS1 recombination, cointegrate formation mediated by IS1 or by the IS1-flanked transposon Tn9, and transposition of Tn9 occurred at a higher frequency in S. typhimurium than in either Escherichia coli or S. sonnei strains. The frequencies of IS1 recombination in S. typhimurium strains containing either zero or eight copies of IS1 were similar.  相似文献   

16.
The isolation of two multi-resistance transposons, Tn2425 and Tn1831, and their relation to Tn21 and Tn2424, is described. A 1.7 kb segment present in Tn2424 and Tn2425 was identified as an IS element by rec-independent transposition, resulting in a cointegrate structure that carries two direct repeated copies of the IS element. By the isolation of this IS element we demonstrated that transposition is one mechanism leading to sequence variations in Tn21-like structures, especially in the region between the mer operon and the sul gene.  相似文献   

17.
The SHV-5 extended-spectrum beta-lactamase gene of pACM1 was previously shown to reside on a segment of DNA ( approximately 7.9 kb) homologous to part of the Klebsiella pneumoniae chromosome. Regions of pACM1 overlapping the ends of the homology were sequenced. A defective copy of IS26 was found on each side of, and immediately adjacent to, the homology. The copies were oriented as direct repeats reminiscent of the compound transposon Tn2680. Other mobile elements and a putative mutagenesis gene, several of which were also defective, were also located in the vicinity of the homology. An intact precursor to the transposon remnant might have contributed to the dissemination of the SHV-5 gene.  相似文献   

18.
Repetitive sequences were isolated and characterized as double-stranded DNA fragments by treatment with S1 nuclease after denaturation and renaturation of the total DNA of Enterobacter cloacae MD36. One repetitive sequence was identical to the nucleotide sequence of IS10-right (IS10R), which is the active element in the plasmid-associated transposon Tn10. Unexpectedly, 15 copies of IS10R were found in the chromosomal DNA of E. cloacae MD36. One copy of the central region of Tn10 was found in the total DNA of E. cloacae MD36. IS10Rs in restriction fragments isolated from the E. cloacae MD36 total DNA showed 9-bp duplications adjacent to the terminal sequences that are characteristic of Tn10 transposition. This result suggests that many copies of IS10R in E. cloacae MD36 are due to transposition of IS10R alone, not due to transposition of Tn10 or to DNA rearrangement. I also found nine copies of IS10 in Shigella sonnei HH109, two and four copies in two different natural isolates of Escherichia coli, and two copies in E. coli K-12 strain JM109 from the 60 bacterial strains that were examined. All dam sites in the IS10s in E. cloacae MD36 and S. sonnei HH109 were methylated. Tn10 and IS10 transpose by a mechanism in which the element is excised from the donor site and inserted into the new target site without significant replication of the transposing segment; thus, the copy numbers of the elements in the cell are thought to be unchanged in most circumstances. Accumulation of IS10 copies in E. cloacae MD36 has interesting evolutionary implications.  相似文献   

19.
We show that both flanking IS256 elements carried by transposon Tn4001 are capable of generating head-to-tail tandem copies and free circular forms, implying that both are active. Our results suggest that the tandem structures arise from dimeric copies of the donor or vector plasmid present in the population by a mechanism in which an IS256 belonging to one Tn4001 copy attacks an IS256 end carried by the second Tn4001 copy. The resulting structures carry abutted left (inverted left repeat [IRL]) and right (inverted right repeat [IRR]) IS256 ends. Examination of the junction sequence suggested that it may form a relatively good promoter capable of driving transposase synthesis in Escherichia coli. This behavior resembles that of an increasing number of bacterial insertion sequences which generate integrative junctions as part of the transposition cycle. Sequence analysis of the IRL-IRR junctions demonstrated that attack of one end by the other is largely oriented (IRL attacks IRR). Our experiments also defined the functional tips of IS256 as the tips predicted from sequence alignments, confirming that the terminal 4 bp at each end are indeed different. The appearance of these multiple plasmid and transposon forms indicates that care should be exercised when Tn4001 is used in transposition mutagenesis. This is especially true when it is used with naturally transformable hosts, such as Streptococcus pneumoniae, in which reconstitution of the donor plasmid may select for higher-order multimers.  相似文献   

20.
F J De Bruijn  A I Bukhari 《Gene》1978,3(4):315-331
We have examined the genomes of the temperate bacteriophages Mu and P1 and some of their insertion mutants for hybridization with the prokaryotic transposable elements IS1 and IS2. We used the DNA blotting-hybridization technique in which denatured DNA fragments are transferred to nitrocellulose paper directly from agarose gels and hybridized to 32P-labeled probe DNA. The 800 base pair insertion in an X mutant of Mu was found to hybridize with IS1. The chloramphenicol resistance transposon, Tn9, in Mu X cam mutants was found to be located at or close to the sites of IS1 insertion in X mutants; Tn9 also hybridized with IS1. The restriction endonuclease BalI cleaved IS1 once; it cleaved Tn9 in all Mu X cam mutants twice to release a fragment of about 1700 base pairs. These results support the conclusion that Tn9 contains one copy of IS1 at each end. In the P1cam isolate, from which Tn9 was transposed to Mu, BalI made a third cut in Tn9 giving rise to fragments of about 850 base pairs. The data further suggested that Tn9 is present in tandem copies in the P1cam isolate we examined. P1 itself was found to harbor IS1. The two P1 strains tested had a common fragment containing IS1; one strain had an additional copy of IS1. The IS1 element common to the P1 strains was shown to be the site of the Tn9 insertion in the P1cam isolate examined. No hybridization between IS2 and any of the Mu and P1 strains could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号