首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The olfactory and accessory lobes constitute prominent histological structures within the larval and mature lobster deutocerebrum, and both are associated with a dense innervation from paired serotonergic nerve cells, the dorsal giant neurons (DGNs). During development, the cell bodies of the DGNs are the first central somata to express serotonin (5-HT), and the onset of their 5-HT immunoreactivity coincides with the beginning of accessory lobe formation. In contrast, the olfactory lobe anlagen emerge much earlier and grow in the apparent absence of serotonin. The role of serotonergic input for the development of these brain structures was investigated in lobster embryos after serotonin had been depleted pharmacologically with the neurotoxin 5,7-dihydroxytryptamine. A ∼90% reduction of serotonin was confirmed in eggs using high-performance liquid chromatography with electrochemical detection. Morphometric analyses suggested that serotonin depletion dramatically slowed the growth of olfactory and accessory lobes, although glomeruli differentiated at the normal time in both areas. The toxin exhibited a high degree of specificity for serotonergic neurons and associated target regions, and serotonin depletion persisted for at least 2 months following treatment. The goal of future experiments is to determine which of the cell types that innervate the olfactory and accessory lobes are affected by toxin treatment, thereby resulting in the retarded growth of these areas. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 357–373, 1997  相似文献   

2.
New neurons are born and integrated into functional circuits in the brains of many adult organisms. In virtually all of these systems, serotonin is a potent regulator of neuronal proliferation. Specific neural pathways underlying these serotonergic influences have not, however, been identified and manipulated. The goal of this study was to test whether adult neurogenesis in the crustacean brain is influenced by electrical activity in the serotonergic dorsal giant neurons (DGNs) innervating the primary olfactory processing areas, the olfactory lobes, and higher order centers, the accessory lobes. Adult‐born neurons occur in two interneuronal cell clusters that are part of the olfactory pathway. This study demonstrates that neurogenesis also continues in these areas in a dissected, perfused brain preparation, although the rate of neuronal production is lower than in brains from intact same‐sized animals. Inclusion of 10?9 M serotonin in the perfusate delivered to the dissected brain preparation restores the rate of neurogenesis to in vivo levels. Although subthreshold stimulation of the DGN does not significantly alter the rate of neurogenesis, electrical activation of a single DGN results in significant increases in neurogenesis in Cluster 10 on the same side of the brain, when compared with levels on the contralateral, unstimulated side. Measurements of serotonin levels in the perfusate using high‐performance liquid chromatography established that serotonin levels are elevated about 10‐fold during DGN stimulation, confirming that serotonin is released during DGN activity. This is the first identified neural pathway through which adult neurogenesis has been directly manipulated. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

3.
5,7-Dihydroxytryptamine (5,7-DHT) is a neurotoxin which causes the depletion of serotonin. Moreover, the serotonergic system is the regulator of the blood glucose level. However, the role of centrally located serotonergic system in blood glucose regulation after D-glucose feed and immobilization (IMO) stress was not clearly characterized yet. Thus the present study was designed to examine the effect of 5,7-DHT administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on the blood glucose level in D-glucose-fed and immobilization stress models. Mice were pretreated once i.c.v. or i.t. with 5,7-DHT (from 10 to 40?µg) for 3 days and D-glucose (2?g/kg) was fed orally. The blood glucose level was measured at 0, 30, 60 and 120?min after D-glucose feeding and immobilization stress initiation. We found that i.c.v. or i.t. pretreatment with 5,7-DHT attenuated the blood glucose level in both animal models. D-glucose feeding causes an increase in plasma insulin level, whereas the plasma corticosterone level was downregulated in the D-glucose-fed model. The i.c.v. or i.t. pretreatment with 5,7-DHT alone slightly increased the plasma corticosterone level. In addition, the i.c.v. or i.t. pretreatment with 5,7-DHT caused a reversal of the downregulation of plasma corticosterone level induced by D-glucose feeding, whereas immobilization stress causes an increase in plasma corticosterone and insulin levels. The i.c.v or i.t. pretreatment with 5,7-DHT attenuated the immobilization stress-induced plasma corticosterone and plasma insulin levels. Our results suggest that supraspinal and spinal depletion of serotonin appears to be responsible for the downregulation of blood glucose level in both D-glucose-fed and immobilization stress models.  相似文献   

4.
The olfactory system provides an excellent model in which to study cell proliferation, migration, differentiation, axon guidance, dendritic morphogenesis, and synapse formation. We report here crucial roles of the Arx homeobox gene in the developing olfactory system by analyzing its mutant phenotypes. Arx protein was expressed strongly in the interneurons and weakly in the radial glia of the olfactory bulb, but in neither the olfactory sensory neurons nor bulbar projection neurons. Arx-deficient mice showed severe anatomical abnormalities in the developing olfactory system: (1) size reduction of the olfactory bulb, (2) reduced proliferation and impaired entry into the olfactory bulb of interneuron progenitors, (3) loss of tyrosine hydroxylase-positive periglomerular cells, (4) disorganization of the layer structure of the olfactory bulb, and (5) abnormal axonal termination of olfactory sensory neurons in an unusual axon-tangled structure, the fibrocellular mass. Thus, Arx is required for not only the proper developmental processes of Arx-expressing interneurons, but also the establishment of functional olfactory neural circuitry by affecting Arx-non-expressing sensory neurons and projection neurons. These findings suggest a likely role of Arx in regulating the expression of putative instructive signals produced in the olfactory bulb for the proper innervation of olfactory sensory axons.  相似文献   

5.
The role of the serotoninergic system in the control of LH, FSH and prolactin secretion was analyzed in control and neonatally estrogenized male rats. Animals injected s.c. with 500 micrograms of estradiol benzoate (EB) on day 1 of life, or their corresponding sham-treated controls, were divided on day 75 into the following groups: (1) orchidectomized; (2) injected intraventricularly with 5,7-dihydroxytryptamine (5,7-DHT); (3) orchidectomized and treated with 5,7-DHT, and (4) sham operated. 15 days later, the animals were decapitated and their FHS, LH and prolactin plasma values measured by specific RIA systems. After the treatment with 5,7-DHT, control animals showed a decline in basal prolactin levels but no modification in basal LH and FSH values. After castration, 5,7-DHT-treated animals showed a reduced LH increase and a more marked prolactin decrease. In neonatal estrogen-treated animals, the 5,7-DHT injection did not change FSH, LH or prolactin levels but did partially or completely abolish the post-castration rise in FSH and LH levels, respectively. These data seem to indicate that neonatal estrogenization induced a modification of the serotoninergic role in the control of LH, FSH and prolactin.  相似文献   

6.
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete‐expressing local interneurons in development of the adult olfactory circuitry. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

7.
The serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) appears to affect invertebrate systems differently from vertebrate ones. The basis for toxicity in vertebrates appears to involve the intraneuronal actions of monoamine oxidase (MAO) upon the toxin. In insects, MAO is not present in appreciable amounts. In this study, we demonstrate that in vitro 5.7-DHT competitively inhibits the uptake of [3H]serotonin by serotonergic neurohaemal areas. The apparent KM increases from 4.9 × 10−7 to 1.7 × 10−6 M. This neurotoxin also causes a significant release of previously accumulated [3H]serotonin in nominally Ca2+-free saline. While 5,7-DHT does not affect the uptake of [3H]tryptophan, it reduces the subsequent synthesis of [3H]serotonin. In vivo, the tissues appear to have recovered 2 weeks after toxin treatment, as determined by immunohistochemistry. At 24 h, 1 week and 2 weeks after injection, the tissues are able to take up and release [3H]serotonin normally. 1 and 2 weeks after injection, insects ingest a normal-sized blood meal, a behaviour acutely disrupted by 5,7-DHT treatment. The results of this and other invertebrate studies suggest that 5,7-DHT does not destroy serotonergic neurons, as it does in vertebrates. 5,7-DHT may be a more useful tool to study the functions of serotonin in invertebrates as one may transiently affect serotonin stores.  相似文献   

8.
9.
Intracellular recordings were made from the major neurites of local interneurons in the moth antennal lobe. Antennal nerve stimulation evoked 3 patterns of postsynaptic activity: (i) a short-latency compound excitatory postsynaptic potential that, based on electrical stimulation of the antennal nerve and stimulation of the antenna with odors, represents a monosynaptic input from olfactory afferent axons (71 out of 86 neurons), (ii) a delayed activation of firing in response to both electrical- and odor-driven input (11 neurons), and (iii) a delayed membrane hyperpolarization in response to antennal nerve input (4 neurons).Simultaneous intracellular recordings from a local interneuron with short-latency responses and a projection (output) neuron revealed unidirectional synaptic interactions between these two cell types. In 20% of the 30 pairs studied, spontaneous and current-induced spiking activity in a local interneuron correlated with hyperpolarization and suppression of firing in a projection neuron. No evidence for recurrent or feedback inhibition of projection neurons was found. Furthermore, suppression of firing in an inhibitory local interneuron led to an increase in firing in the normally quiescent projection neuron, suggesting that a disinhibitory pathway may mediate excitation in projection neurons. This is the first direct evidence of an inhibitory role for local interneurons in olfactory information processing in insects. Through different types of multisynaptic interactions with projection neurons, local interneurons help to generate and shape the output from olfactory glomeruli in the antennal lobe.Abbreviations AL antennal lobe - EPSP excitatory postsynaptic potential - GABA -aminobutyric acid - IPSP inhibitory postsynaptic potential - LN local interneuron - MGC macroglomerular complex - OB olfactory bulb - PN projection neuron - TES N-tris[hydroxymethyl]methyl-2-aminoethane-sulfonic acid  相似文献   

10.
The effect of direct 5,7-dihydroxytryptamine (5,7-DHT) injection into the medulla region of the optic lobe on the locomotor activity was investigated in the adult male cricket, Gryllus bimaculatus. After a 6 hr phase advance of a light-dark cycle, the 5,7-DHT injected animals needed significantly longer time for resynchronization to the new cycle (6.55 +/- 0.62 days) than the control, Ringer's solution injected animals (3.17 +/- 0.15 days; P < 0.001, t-test). Light induced a bout of activity (i.e., masking effect) when light-dark cycle was phase advanced by 6 hr and the duration of the masking effect was significantly longer in 5,7-DHT injected animals. An initial bout of the nocturnal activity was significantly greater in the 5,7-DHT injected animal. Under constant darkness, the freerunning periods of both groups were not significantly different. Under constant light, a significantly higher percentage of 5,7-DHT injected animals showed arrhythmicity compared with the control group. An analysis carried by high-pressure liquid chromatography with electro-chemical detection (HPLC-ECD) revealed that the serotonin content in the optic lobe was significantly reduced to less than 50% in the 5,7-DHT injected animals, even one month after the injection. These results suggest that serotonin plays important roles in the regulation of circadian locomotor rhythms of the cricket mainly by regulating the sensitivity of the photoreceptive system.  相似文献   

11.
The immediate and long-term effects of the selective serotonergic neurotoxin 5,7-dihydroxytryp-tamine (5,7-DHT) on rat striatal serotonergic neurons were examined after its intracerebroventricular administration using in vivo voltammetry. Extracellular concentration of 5-hydroxyindoles increased immediately following intracerebroventricular 5,7-DHT injection (200 g in 24 l, 18 min), peaked at 1.5-2 h, and returned to normal by 4 h. 5,7-DHT diffused to the contralateral striatum in detectable amounts 9 to 12 min after the start of injection and returned to basal levels by 1.5 h. Three to 6 days after 5,7-DHT lesions, 5-hydroxytryptophan administration produced an increase in striatal 5-hydroxyindoles that was greater than that produced in pre-lesioned rats. This effect was maximal at 14 to 17 days post-lesion, and remained even after 50 days. The short-term effect of 5,7-DHT may be attributable to increased serotonin release, inhibition of uptake, or monoamine oxidase inhibition. The long-term effect of 5,7-DHT lesions may attributable to increased synthesis of serotonin or decreased reuptake in remaining serotonergic neurons.  相似文献   

12.
High affinity [3H]imipramine binding, endogenous levels of serotonin and noradrenaline, and serotonin uptake were determined in brain regions of rats with selective destruction of serotonergic neurons by 5,7-dihydroxytryptamine (5,7-DHT), of adrenergic neurons by 6-hydroxydopamine (6-OHDA), and of rats treated with reserpine. Neonatal treatment with 5,7-DHT resulted in a significant decrease of both serotonin levels and density (Bmax) of high affinity [3H]imipramine binding sites in the hippocampus. In contrast, an elevation of serotonin levels and an increase in Bmax of [3H]imipramine binding were noted in the pons--medulla region. No changes were observed in the noradrenaline content in either of these regions. Intracerebral 6-OHDA lesion produced a drastic suppression of noradrenaline levels in cerebral cortex but failed to alter the binding affinity (KD) or density (Bmax) of [3H]imipramine recognition sites. A single injection of reserpine (2.5 mg/kg) resulted in marked depletion of both serotonin (by 57%) and noradrenaline (by 86%) content and serotonin uptake (by 87%) in the cerebral cortex but had no significant influence of the parameters of high affinity [3H]imipramine binding in this brain region. The results suggest that high affinity [3H]imipramine binding in the brain is directly related to the integrity of serotonergic neurons but not to the magnitude of the uptake or the endogenous levels of the transmitter, and is not affected by damage to noradrenergic neurons or by low levels of noradrenaline.  相似文献   

13.
The analgesic effect of morphine in the tail immersion test was studied in rats three and ten days after intracerebroventricular 5,7-dihydroxytryptamine (5,7-DHT) given to selectively destroy serotonergic neurons. Morphine analgesia was reduced three but not ten days after the neurotoxin. Ten days after 5,7-DHT, the inhibiting effect of metergoline, a serotonin antagonist, on morphine analgesia was still present, suggesting that functional recovery of the serotonergic system may partly explain the different results.  相似文献   

14.
目的:于中脑正中中缝核局部微量注射5,7-二羟色胺(5,7-DHT),探讨5-羟色胺(5-HT)与癫痫的关系及匹罗卡品(PILO)致痫大鼠学习记忆改变的可能机制。方法:成年SD大鼠随机分为PILO组、PILO+5,7-DHT组、空白对照组三组,然后根据是否出现癫痫持续状态(SE)再将PILO组分成:PILO+SE组和PILO-SE组两亚组;利用视频脑电图观察大鼠癫痫发作及皮层脑电变化;运用Morris水迷宫测评大鼠空间学习记忆水平;最后运用免疫组化法观察大鼠中缝核5-HT能神经元。结果:大鼠予以5,7-DHT(PILO+5,7-DHT组)处理后造模成功率、死亡率及慢性期自发性发作频率均增高;与空白组比较PILO+SE组中缝核5-HT能神经元数目有所下降(P<0.05),而PILO+5,7-DHT组下降更明显(P<0.01);与空白组比较PILO+SE组平均逃避潜伏期延长、穿越平台次数减少、原平台象限停留时间缩短(P<0.05),而与PILO+SE组比较PILO+5,7-DHT组变化不明显。结论:脑内5-HT水平的降低容易诱发癫痫发作,尚不能认为癫痫大鼠合并认知功能障碍与脑内5-HT水平下降有关。  相似文献   

15.
Role of serotonin in olfactory recognition was tested by depleting the olfactory bulb serotonin during postnatal day (PND) 1 - 4 following administration of 5,7-dihydroxytryptamine. Significant difference in the olfactory recognition test was observed during PND5-7; control pups successfully recognized and oriented towards their mother; whereas treated pups failed to recognize their mother odour. Later on, during PND12-14, both group of pups responded equally in the recognition test. Levels of olfactory bulb serotonin were depleted (53.3%) in the treated pups on PND-8, which was restored on PND-14 with only 15% variation. Further analysis demonstrated that depletion of serotonin in olfactory bulb did not affect the normal suckling and weight gain, it only modulates olfactory recognition.  相似文献   

16.
Summary Intraventricular injections of moderate doses (25–75g) of 5,7-dihydroxytryptamine (5,7-DHT) into the left lateral ventricle of ether anaesthetized rats cause pronounced damage to CNS indoleamine axons, reflected by accumulations of large amounts of serotonin in distorted, heavily swollen axons, so called indoleamine droplet fibres. Larger doses (100, 150 or 300 g) provoke a piling up of catecholamines in drug affected preterminal catecholamine containing fibres besides extensive lesioning of indoleamine axons.5,7-DHT condenses with formaldehyde to form a light yellow fluorescent compound. Uptake and accumulation of 5,7-DHT into indoleamine terminals and axons—as revealed in short term experiments—provides a means of mapping of indoleamine neurons in the rat brain.Following the application of 5,7-DHT (25–150 g), rats develop characteristic behavioural disturbances, as e.g. increased sensitivity to sensory stimulation, and a failure to habituate to repeatedly applied sensory stimuli, and bizarre social behaviour, i.e. repeated fighting attacks in an unusual upright posture. These alterations resemble those observed after 5,6-DHT and may be indicative of a deprivation of the brain from functional serotonin.5,7-DHT is considered to be an important, additional tool for the investigation of serotonin neurons and problems of serotonin transmission in the mammalian brain.Dedicated to Prof. Dr. Dr. R. Janzen with the best wishes for his 65th birthday.Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

17.
We have recently reported that the anxiolytic-like effect observed in rats severely depleted of brain serotonin (5-HT) by means of 5,7-DHT is indirect and probably involves the GABA(A)/benzodiazepine chloride ionophore receptor complex (GABAA/BDZ-RC). One tentative explanation for this effect considered the involvement of corticosteroids. In the present series of experiments we have therefore investigated the effect of adrenalectomy (ADX) on the 5,7-DHT-induced anxiolytic-like effect displayed by rats in Vogel's conflict test. ADX totally abolished the anticonflict effect of the 5,7-DHT lesion. Replacement treatment with corticosterone, but not with dexamethasone, reinstated the anticonflict effect. These results indicate that an intact adrenocortical function, possibly via brain steroid type I receptors, is required for the expression of the 5,7-DHT-induced anxiolytic-like effect. It is postulated that ADX lowers the concentration of endogenous positive modulators at the GABAA/BDZ-RC to a level no longer sufficient to produce anxiolytic-like effects in 5,7-DHT-lesioned animals. The finding that 5,7-DHT-lesioned animals were more sensitive than sham-lesioned controls to the anticonflict effect of the barbiturate-like corticosteroid THDOC provides further support for the contention that an increased endogenous activity at the GABAA/BDZ-RCes is involved in the anxiolytic-like effect observed in rats with a severe depletion of brain 5-HT.  相似文献   

18.
Immunocytochemical and autoradiographic techniques were employed to determine the time course of expression of the serotonin (5-HT) transporter (SERT) on thalamocortical afferents in the rat's primary somatosensory cortex (S-I), and to correlate this expression to the transient vibrissae-related patterning of 5-HT immunostaining previously described. In additional in vivo and in vitro experiments, 5-HT and 3H-5-HT were applied directly to the cortices of untreated and 5,7-dihydroxytryptamine-treated (5,7-DHT) rats in order to determine the period during which SERT functions on thalamocortical axons to take up 5-HT. In postnatal rats, SERT immunohistochemistry revealed a somatotopic patterning in S-I that persisted until P-15, which is 6 days after the disappearance of the vibrissae-related 5-HT immunostaining. 3H-citalopram autoradiography revealed a vibrissae-related pattern in layer IV of S-I until at least P-30. Following destruction of raphe-cortical afferents with 5,7-DHT on the day of birth, this binding pattern remained visible until at least P-25, indicating that SERT located on thalamocortical axons is responsible for the 3H-citalopram patterning observed in S-I. Tissue from 5,7-DHT-treated rats that had 5-HT applied directly to their cortices revealed a normal vibrissae-related pattern of 5-HT immunostaining in S-I at P-7 and P-11 but only a faint pattern at P-13 and none at P-14. In addition, 3H-5-HT injected directly into S-I labeled layer IV barrels at P-6 and P-12 but not at P-18. The results of these experiments demonstrate that SERT is expressed by thalamocortical afferents and remains functional long after the vibrissae-related 5-HT immunostaining in cortex disappears.  相似文献   

19.
The cricket, Gryllus bimaculatus, shows a rhythm reversal from diurnal to nocturnal in about a week after the imaginal molt. In the present study, we investigated the role of serotonin (5-HT) in the rhythm reversal. The 5-HT content in the brain measured by HPLC equipped with an electrochemical detector gradually increased after the imaginal molt, and in fully nocturnal adults it was about 2 times of nymphal level. We then examined the effects of 5,7-dihydroxytryptamine (5,7-DHT), a selective neurotoxine to serotonergic neurons, on the locomotor rhythm. In most animals with 5,7-DHT (25 muM or 250 muM, 32.2 nl) injected into the brain, daytime activity significantly increased even after the rhythm reversal, while nighttime activity was not significantly affected, forming rather diurnal pattern. The serotonin content in the brain of animals injected with 250 muM 5,7-DHT was reduced by about 30%. On the basis of these results, possible involvement of 5-HT in the neural mechanism controlling the locomotor rhythm is discussed.  相似文献   

20.
Neuronal architecture of the antennal lobe in Drosophila melanogaster   总被引:4,自引:0,他引:4  
Summary Computer reconstruction of the antennal lobe of Drosophila melanogaster has revealed a total of 35 glomeruli, of which 30 are located in the periphery of the lobe and 5 in its center. Several prominent glomeruli are recognizable by their location, size, and shape; others are identifiable only by their positions relative to prominent glomeruli. No obvious sexual dimorphism of the glomerular architecture was observed. Golgi impregnations revealed: (1) Five of the glomeruli are exclusive targets for ipsilateral antennal input, whereas all others receive afferents from both antennae. Unilateral amputation of the third antennal segment led to a loss of about 1000 fibers in the antennal commissure. Hence, about 5/6 of the approximately 1200 antennal afferents per side have a process that extends into the contralateral lobe. (2) Afferents from maxillary palps (most likely from basiconic sensilla) project into both ipsi-and contralateral antennal lobes, yet their target glomeruli are apparently not the same as those of antennal basiconic sensilla. (3) Afferents in the antennal lobe may also stem from pharyngeal sensilla. (4) The most prominent types of interneurons with arborizations in the antennal lobe are: (i) local interneurons ramifying in the entire lobe, (ii) unilateral relay interneurons that extend from single glomeruli into the calyx and the lateral protocerebrum (LPR), (iii) unilateral interneurons that connect several glomeruli with the LPR only, (iv) bilateral interneurons that link a small number of glomeruli in both antennal lobes with the calyx and LPR, (v) giant bilateral interneurons characterized by extensive ramifications in both antennal lobes and the posterior brain and a cell body situated in the midline of the suboesophageal ganglion, and (vi) a unilateral interneuron with extensive arborization in one antennal lobe and the posterior brain and a process that extends into the thorax. These structural results are discussed in the context of the available functional and behavioral data.Abbreviations AC antennal commissure - AMMC antennal mechanosensory and motor center - iACT, mACT, oACT inner/middle/outer antenno-cerebral tract - bACTI, uACTI bilateral/unilateral ACT relay interneuron - AN antennal nerve - AST antenno-suboesophageal tract - FAI fine arborization relay interneuron - GSI giant symmetric relay interneuron - LI local interneuron - LPR lateral protocerebrum - SOG suboesophageal ganglion - TI thoracic relay interneuron - bVI bilateral V-relay interneuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号