首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The physical characteristics of the plastid DNA in Neospora caninum were investigated using pulsed-field gel electrophoresis and TEM. In a comparison of contour-clamped homogenous electric field and field inversion gel electrophoresis, the latter proved the more successful technique for studying the plastid molecules. In most cases, restriction or modifying enzymes were required to enable the plastid DNA molecules to enter the gel from the well area. The unit length of the plastid of N. caninum is approximately 35 kb; however, there is evidence for the formation of oligomeric molecules, which may migrate as linear molecules in approximate multiples of the unit length. Four different plastid genes encoding the ssrRNA, lsrRNA, rpoC and tufA genes were identified by hybridisation studies of contour-clamped homogenous electric field and field inversion gel electrophoresis gels. Transmission EM was performed on isolated plastid DNA, and circular structures similar in size and appearance to those described in other apicomplexans were observed, with an approximate length of 19 microm. The data presented here conclusively show that the Nc-Liverpool canine strain of N. caninum possesses a plastid DNA, with physical characteristics similar to the plastids found in other apicomplexans.  相似文献   

3.
The selC gene product, tRNA(Sec), inserts selenocysteine at UGA (opal) codons in a specialized mRNA context. We have investigated the action of the tRNA at ordinary UGA codons, normally not translated, by changing the unusual structural features of tRNA(Sec). Sequences in the D arm, CCA arm and variable arm of the tRNA all contribute to the prohibition against translation of ordinary UGA codons. One multiple mutant is a moderately efficient serine-inserting UGA suppressor tRNA.  相似文献   

4.
5.
Effects of surrounding sequence on the suppression of nonsense codons   总被引:61,自引:0,他引:61  
Using a lacI-Z fusion system, we have determined the efficiency of suppression of nonsense codons in the I gene of Escherichia coli by assaying beta-galactosidase activity. We examined the efficiency of four amber suppressors acting on 42 different amber (UAG) codons at known positions in the I gene, and the efficiency of a UAG suppressor at 14 different UGA codons. The largest effects were found with the amber suppressor supE (Su2), which displayed efficiencies that varied over a 35-fold range, and with the UGA suppressor, which displayed a 170-fold variation in efficiency. Certain UGA sites were so poorly suppressed (less than 0.2%) by the UGA suppressor that they were not originally detected as nonsense mutations. Suppression efficiency can be correlated with the sequence on the 3' side of the codon being suppressed, and in many cases with the first base on the 3' side. In general, codons followed by A or G are well suppressed, and codons followed by U or C are poorly suppressed. There are exceptions, however, since codons followed by CUG or CUC are well suppressed. Models explaining the effect of the surrounding sequence on suppression efficiency are considered in the Discussion and in the accompanying paper.  相似文献   

6.
In universal-code eukaryotes, a single class-1 translation termination factor eRF1 decodes all three stop codons, UAA, UAG, and UGA. In some ciliates with variant genetic codes one or two stop codons are used to encode amino acid(s) and are not recognized by eRF1. In Stylonychia, UAG and UAA codons are reassigned as glutamine codons, and in Euplotes, UGA is reassigned as cysteine codon. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of eRF1. Because variant-code ciliates most likely evolved from universal code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. To find out amino acid residues which confer UAR-only specificity to Euplotes aediculatus eRF1, eRFI chimeras were constructed by swapping eRF1 E. aediculatus N-terminal domain sequences with the matching ones from the human protein. In these chimeras the MC-domain was from human eRF1. Functional analysis of these chimeric eRFI highlighted the crucial role of the two regions (positions 38-50 and 123-145) in the N-terminal domain of E. aediculatus eRF1 that restrict E. aediculatus eRF1 specificity toward UAR codons. Possibly, restriction of eRF1 specificity to UAR codons might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UGA to sense codons.  相似文献   

7.
Amplification of macronuclear DNA of the ciliate Euplotes octocarinatus revealed the presence of two genes encoding putative polypeptide release factors (RFs) of the codon specific class-I type. They are named eRF1a and eRF1b, respectively. cDNA amplification revealed that both eRF1 genes are expressed. Determination of their copy numbers showed that they are similarly amplified to a level of about 27,000. The deduced protein sequences of the two genes are 57 and 58% identical with human eRF1 and 79% identical to each other. The gene encoding eRF1b possesses three in-frame UGA codons. This codon is known to encode cysteine in Euplotes; only UAA and UAG are used as stop codons in this organism. The primary structure of the two release factors is analyzed and compared with the primary structure of other eukaryotic release factors including the one of Tetrahymena thermophila which uses only UGA as a stop codon. eRF1a and eRF1b of Euplotes as well as eRF1 of Tetrahymena differ from human eRF1 and other class-I release factors of eukaryotes in a domain recently proposed to be responsible for codon recognition. Based on the changes which we observe in this region and the differential use of the stop codons in these two ciliates we predict the amino acids participating in stop codon recognition in eRF1 release factors.  相似文献   

8.
9.
Nonsense suppressor tRNAs have been suggested as potential agents for human somatic gene therapy. Recent work from this laboratory has described significant effects of 3' codon context on the efficiency of human nonsense suppressors. A rapid increase in the number of reports of human diseases caused by nonsense codons, prompted us to determine how the spectrum of mutation to either UAG, UAA or UGA codons and their respective 3' contexts, might effect the efficiency of human suppressor tRNAs employed for purposes of gene therapy. This paper presents a survey of 179 events of mutations to nonsense codons which cause human germline or somatic disease. The analysis revealed a ratio of approximately 1:2:3 for mutation to UAA, UAG and UGA respectively. This pattern is similar, but not identical, to that of naturally occurring stop codons. The 3' contexts of new mutations to stop were also analysed. Once again, the pattern was similar to the contexts surrounding natural termination signals. These results imply there will be little difference in the sensitivity of nonsense mutations and natural stop codons to suppression by nonsense suppressor tRNAs. Analysis of the codons altered by nonsense mutations suggests that efforts to design human UAG suppressor tRNAs charged with Trp, Gln, and Glu; UAA suppressors charged with Gln and Glu, and UGA suppressors which insert Arg, would be an essential step in the development of suppressor tRNAs as agents of human somatic gene therapy.  相似文献   

10.
11.
Readthrough of the nonsense codons UAG, UAA, and UGA is seen in Escherichia coli strains lacking tRNA suppressors. Earlier results indicate that UGA is miscoded by tRNA(Trp). It has also been shown that tRNA(Tyr) and tRNA(Gln) are involved in UAG and UAA decoding in several eukaryotic viruses as well as in yeast. Here we have investigated which amino acid(s) is inserted in response to the nonsense codons UAG and UAA in E. coli. To do this, the stop codon in question was introduced into the staphylococcal protein A gene. Protein A binds to IgG, which facilitates purification of the readthrough product. We have shown that the stop codons UAG and UAA direct insertion of glutamine, indicating that tRNA(Gln) can read the two codons. We have also confirmed that tryptophan is inserted in response to UGA, suggesting that it is read by tRNA(Trp).  相似文献   

12.
Mutational changes involving transitions can convert only one sense codon to ochre, two codons to amber, and two codons to UGA. One codon, UGG for tryptophan, can be converted by transitions to either amber or UGA. By transversion changes 15 other codons can be converted to ochre and/or amber and/or UGA. Ten amino acids can never be replaced by chain termination as a result of transition and transversion mutagenesis of single base-pairs. For two systems (bacteriophage T4 lysozyme and Escherichia coli K12 tryptophan synthetase A protein) in which the poly-peptide gene product has been completely sequenced one can construct predictive intra-genic distribution maps for the location of all possible chain-terminating mutations arising as a result of transitions and transversions.  相似文献   

13.
The mitochondrial selenoprotein is a major structural protein of the keratinous mitochondrial capsule in mammalian sperm, a structure that functions in shaping mitochondria into the helical sheath surrounding the flagellum. A cDNA clone (Kleene et al., 1990) was isolated previously encoding a protein whose predicted size and amino acid content of > 20% cysteine and proline closely resembled a selenoprotein in the bull mitochondrial capsule. The sequences of additional cDNAs and genomic DNA reported here reveal that the mouse mitochondrial capsule selenoprotein reading frame begins 54 codons further upstream than previously reported. Significantly, these 54 codons contain three in-phase UGA codons, which normally signify stop but encode selenocysteine in bacterial and mammalian selenoproteins. The coding region of the mitochondrial capsule selenoprotein gene is interrupted by a single intron. S1 mapping and primer extension demonstrate that the vast majority of MCS mRNAs are spliced using consensus 5' and 3' slice junctions in mammalian cells. However, two cDNAs have been identified that apparently represent rare mRNA variants produced by use of cryptic splice sites.  相似文献   

14.
D York  V Ivanov  J Gan  M Filutowicz 《Gene》1992,116(1):7-12
The autogenously controlled pir gene of plasmid R6K was believed to encode a single polypeptide that plays multiple roles in the plasmid's biology. We have isolated an opal (op) mutant at the 18th codon of the pir coding frame which does not totally abolish translation of pir mRNA. In extracts of cells containing this mutation two translational products (35 kDa and 30.2 kDa) have been detected. We propose that the 35-kDa polypeptide produced by the pir18 op mutation contains Trp substituted for Arg18 as the result of an opal readthrough. Translation, which results in the 30.2-kDa polypeptide, originates downstream from the UGA stop signal created by the mutation. Moreover, we realize now that the 30.2-kDa polypeptide is also produced in cells containing a wild-type (wt) pir gene. The shorter variant of the pi protein lacks replication initiation and inhibition functions, as well as autorepressor activity in vivo. We also show that an in-frame fusion of seven N-terminal codons of the trpE gene with a pir gene lacking the first two codons produces two polypeptides which replace the 35-kDa pi protein and are of similar molecular weight. Thus, at least three options exist in the translation of the wt pir mRNA. Start codons are most likely at codon positions 1, 6 or 7, and 36 or 38. Each of these five AUG codons is preceded by a consensus ribosome-binding site (RBS).  相似文献   

15.
In order to isolate genes coding for antigens of Neospora caninum which are recognised by the host immune system during a chronic murine infection, a cDNA library was immunoscreened with pooled sera from mice which survived three independent infections by N. caninum. Two new genes from N. caninum were isolated and expressed in Escherichia coli. The genes identified include one homologous to GRA1 of Toxoplasma gondii, plus another (NCP20) previously unknown in any taxon. Both genes encode small polypeptides which induced an IgG response in the mouse and were also recognised by IgG from a cow chronically infected with N. caninum. These results are consistent with the hypothesis that the polypeptides encoded by these genes are a target for the host immune system during chronic infections of N. caninum.  相似文献   

16.
We have determined the nucleotide sequence of a 7 kb (1 kb = 10(3) base-pairs) region that includes the entire small single-copy region (SSC) of the plastid genome of Epifagus virginiana, a non-photosynthetic, parasitic flowering plant. The SSC (4.8 kb) is considerably smaller than those of photosynthetic plants due to the complete deletion of all photosynthetic, chlororespiratory and ribosomal protein genes. This leaves only two genes: a protein gene of 1738 codons whose product is unlikely to be involved in bioenergetic processes and a leucine tRNA gene (trn(LUAG)). Both genes span junctions between the inverted repeat and the SSC, with the consequence that the terminal 20 base-pairs of the repeat is transcribed in both directions and functions both as the 3' end of the tRNA gene and as an internal segment of orf1738. We find that the region of tobacco plastid DNA homologous to Epifagus orf1738 contains a single open reading frame (ORF) of 1901 codons rather than the three ORFs of 1244, 273 and 228 codons originally reported. However, we confirm that the equivalent region of the bryophyte Marchantia contains two genes (1068 and 464 codons) corresponding to the N and C-terminal portions of the dicot protein. In contrast, rice plastid DNA contains a severely truncated pseudogene at this locus.  相似文献   

17.
原生动物的一些纤毛虫中终止密码子发生重分配现象,将1个或2个终止密码子翻译为氨基酸.目前对这一现象的发生机制仍无合理解释.近年来,对蛋白质合成终止过程中肽链释放因子(eukaryotic polypeptide release factor, eRF)结构和功能的深入研究,为揭示终止密码子的重分配机制提供了重要的线索.本实验以具有终止密码子识别特异性的四膜虫Tt-eRF1为研究对象,将其中与密码子识别有关的GTx、NIKS和Y-C-F关键模体(motif) 引入识别通用终止密码子的酵母Sc=eRF1中,构建成各种嵌合体eRF1.利用双荧光素酶报告系统和细胞活性实验,分析关键模体及其周边的氨基酸对eRF1识别终止密码子性质的影响.结果表明,GTx和NIKS模体一定程度上决定eRF1识别终止密码子第1位碱基U和第2位碱基A;Y-C-F模体决定eRF1识别终止密码子UGA的第2位碱基G.模体内及其相邻氨基酸定点突变分析进一步支持以上结果.本研究推测,eRF1在进化过程中一些关键模体结构的改变决定其识别终止密码子的特异性,只能识别3个终止密码子中的1个或2个.随后,由于tRNA基因的突变产生阻抑性tRNA,促成终止密码子在原生动物纤毛虫中的重新分配.  相似文献   

18.
Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.  相似文献   

19.
20.
The synthesis of eukaryotic selenoproteins involves the recoding of an internal UGA codon as a site for selenocysteine incorporation. This recoding event is directed by a selenocysteine insertion sequence in the 3'-untranslated region. Because UGA also functions as a signal for peptidyl-tRNA hydrolysis, we have investigated how the rates of translational termination and selenocysteine incorporation relate to cis-acting elements in the mRNA as well as to trans-acting factors in the cytoplasm. We used cis-elements from the phospholipid glutathione peroxidase gene as the basis for this work because of its relatively high efficiency of selenocysteine incorporation. The last two codons preceding the UGA were found to exert a far greater influence on selenocysteine incorporation than nucleotides downstream of it. The efficiency of selenocysteine incorporation was generally much less than 100% but could be partially enhanced by concomitant overexpression of the tRNA(Sec) gene. The combination of two or three UGA codons in one reading frame led to a dramatic reduction in the yield of full-length protein. It is therefore unlikely that multiple incorporations of selenocysteine are processive with respect to the mode of action of the ribosomal complex binding to the UGA site. These observations are discussed in terms of the mechanism of selenoprotein synthesis and its ability to compete with termination at UGA codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号