共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparison of human protein-protein interaction maps 总被引:1,自引:0,他引:1
MOTIVATION: Large-scale mappings of protein-protein interactions have started to give us new views of the complex molecular mechanisms inside a cell. After initial projects to systematically map protein interactions in model organisms such as yeast, worm and fly, researchers have begun to focus on the mapping of the human interactome. To tackle this enormous challenge, different approaches have been proposed and pursued. While several large-scale human protein interaction maps have recently been published, their quality remains to be critically assessed. RESULTS: We present here a first comparative analysis of eight currently available large-scale maps with a total of over 10,000 unique proteins and 57,000 interactions included. They are based either on literature search, orthology or by yeast-two-hybrid assays. Comparison reveals only a small, but statistically significant overlap. More importantly, our analysis gives clear indications that all interaction maps imply considerable selection and detection biases. These results have to be taken into account for future assembly of the human interactome. AVAILABILITY: An integrated human interaction network called Unified Human Interactome (UniHI) is made publicly accessible at http://www.mdc-berlin.de/unihi. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
2.
Rhodes DR Tomlins SA Varambally S Mahavisno V Barrette T Kalyana-Sundaram S Ghosh D Pandey A Chinnaiyan AM 《Nature biotechnology》2005,23(8):951-959
A catalog of all human protein-protein interactions would provide scientists with a framework to study protein deregulation in complex diseases such as cancer. Here we demonstrate that a probabilistic analysis integrating model organism interactome data, protein domain data, genome-wide gene expression data and functional annotation data predicts nearly 40,000 protein-protein interactions in humans-a result comparable to those obtained with experimental and computational approaches in model organisms. We validated the accuracy of the predictive model on an independent test set of known interactions and also experimentally confirmed two predicted interactions relevant to human cancer, implicating uncharacterized proteins into definitive pathways. We also applied the human interactome network to cancer genomics data and identified several interaction subnetworks activated in cancer. This integrative analysis provides a comprehensive framework for exploring the human protein interaction network. 相似文献
3.
Two protein-protein interaction sites on the spliceosome-associated human cyclophilin CypH 下载免费PDF全文
Ingelfinger D Göthel SF Marahiel MA Reidt U Ficner R Lührmann R Achsel T 《Nucleic acids research》2003,31(16):4791-4796
Cyclophilins are a family of proteins that share a common, highly conserved sequence motif. Cyclophilins bind transiently to other proteins and facilitate their folding. One member of the family, hCypH, is part of the human spliceosomal [U4/U6·U5] tri-snRNP complex; it associates specifically and stably with the U4/U6-specific protein 60K. Here, we demonstrate that recombinant hCypH exhibits peptidyl–prolyl isomerase (PPIase) activity, and describe mutagenesis studies demonstrating that it shares the catalytic pocket with other members of the cyclophilin family. However, neither the PPIase activity nor the catalytic pocket is required for binding of protein 60K. Rather, hCypH contains a small insertion in a loop of the otherwise conserved cyclophilin backbone, and this minor change creates a highly specific binding site that is responsible for the association of this cyclophilin, but not others, with protein 60K. hCypH is thus the first small cyclophilin shown to have a second protein–protein interaction site and the ability to bind stably to another protein. Since the catalytic pocket and the second binding site are located on opposite sides of the cyclophilin structure, this opens up the interesting possibility that hCypH may serve as a bridge mediating interactions between protein 60K of the U4/U6 snRNP and other as yet unknown factors. 相似文献
4.
5.
Discovering disease-genes by topological features in human protein-protein interaction network 总被引:3,自引:0,他引:3
MOTIVATION: Mining the hereditary disease-genes from human genome is one of the most important tasks in bioinformatics research. A variety of sequence features and functional similarities between known human hereditary disease-genes and those not known to be involved in disease have been systematically examined and efficient classifiers have been constructed based on the identified common patterns. The availability of human genome-wide protein-protein interactions (PPIs) provides us with new opportunity for discovering hereditary disease-genes by topological features in PPIs network. RESULTS: This analysis reveals that the hereditary disease-genes ascertained from OMIM in the literature-curated (LC) PPIs network are characterized by a larger degree, tendency to interact with other disease-genes, more common neighbors and quick communication to each other whereas those properties could not be detected from the network identified from high-throughput yeast two-hybrid mapping approach (EXP) and predicted interactions (PDT) PPIs network. KNN classifier based on those features was created and on average gained overall prediction accuracy of 0.76 in cross-validation test. Then the classifier was applied to 5262 genes on human genome and predicted 178 novel disease-genes. Some of the predictions have been validated by biological experiments. 相似文献
6.
The advent of the "omics" era in biology research has brought new challenges and requires the development of novel strategies to answer previously intractable questions. Molecular interaction networks provide a framework to visualize cellular processes, but their complexity often makes their interpretation an overwhelming task. The inherently artificial nature of interaction detection methods and the incompleteness of currently available interaction maps call for a careful and well-informed utilization of this valuable data. In this tutorial, we aim to give an overview of the key aspects that any researcher needs to consider when working with molecular interaction data sets and we outline an example for interactome analysis. Using the molecular interaction database IntAct, the software platform Cytoscape, and its plugins BiNGO and clusterMaker, and taking as a starting point a list of proteins identified in a mass spectrometry-based proteomics experiment, we show how to build, visualize, and analyze a protein-protein interaction network. 相似文献
7.
A human protein-protein interaction network: a resource for annotating the proteome 总被引:60,自引:0,他引:60
Stelzl U Worm U Lalowski M Haenig C Brembeck FH Goehler H Stroedicke M Zenkner M Schoenherr A Koeppen S Timm J Mintzlaff S Abraham C Bock N Kietzmann S Goedde A Toksöz E Droege A Krobitsch S Korn B Birchmeier W Lehrach H Wanker EE 《Cell》2005,122(6):957-968
Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes. 相似文献
8.
Transferring the biological function of one protein to another is a key issue in understanding the structure and function relationship of proteins. We have developed a strategy for grafting protein-protein interaction epitopes. As a first step, residues at the interface of the ligand protein which strongly interact with the receptor protein were identified. Then protein scaffolds were docked onto receptor protein based on geometric complementarity. Only high docking score matches were saved. For each saved match, the scaffold protein was accepted if it had suitable positions for grafting key interaction residues of the ligand protein. These candidate residues were mutated to corresponding residues in the ligand protein at each relevant position and the mutated scaffold protein was co-minimized with receptor protein. Finally, the minimized complexes were evaluated by a scoring function deduced from statistical analysis of rigid binding data sets. As a test case, the binding epitope of barstar, the inhibitor of barnase, was grafted onto smaller proteins. Pheromone Er-1 (PDB entry 1erc) has been found to be a good scaffold. The calculated binding free energy for mutated Pheromone Er-1 is equivalent to that of barstar. 相似文献
9.
Recent large-scale studies of protein complexes in yeast have demonstrated that the wide majority of proteins exist in the cell as parts of multicomponent assemblies, mostly novel and of unknown function. The structural and functional analysis of these complexes should be a priority for structural biologists in coming years. In silico methods such as docking simulations, which may contribute to this analysis, are being tested in the CAPRI community-wide experiment, which assesses blind predictions of the structure of protein-protein complexes. 相似文献
10.
An automatic procedure which generates possible modes of protein-protein association is developed and applied to the bovine pancreatic trypsin inhibitor-trypsin complex as a test case. Using a simplified model in which each residue is replaced by one interaction center, all possible modes of interaction between the inhibitor and the active center of the enzyme are generated systematically. The non-bonded interactions between the molecules and the protein surface area buried in the generated interfaces are evaluated and used as criteria for selecting stable complexes. We show that satisfactory estimates of accessible and buried surface areas can be made using the simplified model.The procedure leads to about nine structures having non-bonded interactions and buried surface areas similar to those of the native complex. This suggests that the major contributions to the free energy of dissociation are taken into account by our selection procedure, though complementarity and specificity are not properly represented in the simplified model. However, it makes it possible to scan a much larger number of configurations than would otherwise be feasible, chiefly through elimination of side-chain detail. 相似文献
11.
Dynamic changes in protein-protein interaction and protein phosphorylation probed with amine-reactive isotope tag 总被引:1,自引:0,他引:1
Smolka MB Albuquerque CP Chen SH Schmidt KH Wei XX Kolodner RD Zhou H 《Molecular & cellular proteomics : MCP》2005,4(9):1358-1369
We present an approach for quantitative analysis of changes in the composition and phosphorylation of protein complexes by MS. It is based on a new class of stable isotope-labeling reagent, the amine-reactive isotope tag (N-isotag), for specific and quantitative labeling of peptides following proteolytic digestion of proteins. Application of the N-isotag method to the analysis of Rad53, a DNA damage checkpoint kinase in Saccharomyces cerevisiae, led to the identification of dynamic associations between Rad53 and the nuclear transport machinery, histones, and chromatin assembly proteins in response to DNA damage. Over 30 phosphorylation sites of Rad53 and its associated proteins were identified and quantified, and they showed different changes in phosphorylation in response to DNA damage. Interestingly, Ser789 of Rad53 was found to be a major initial phosphorylation site, and its phosphorylation regulates the Rad53 abundance in response to DNA damage. Collectively, these results demonstrate that N-isotag-based quantitative MS is generally applicable to study dynamic changes in the composition of protein complexes and their phosphorylation patterns in a site-specific manner in response to different cell stimuli. 相似文献
12.
Hinsby AM Kiemer L Karlberg EO Lage K Fausbøll A Juncker AS Andersen JS Mann M Brunak S 《Molecular cell》2006,22(2):285-295
Recent proteomic efforts have created an extensive inventory of the human nucleolar proteome. However, approximately 30% of the identified proteins lack functional annotation. We present an approach of assigning function to uncharacterized nucleolar proteins by data integration coupled to a machine-learning method. By assembling protein complexes, we present a first draft of the human ribosome biogenesis pathway encompassing 74 proteins and hereby assign function to 49 previously uncharacterized proteins. Moreover, the functional diversity of the nucleolus is underlined by the identification of a number of protein complexes with functions beyond ribosome biogenesis. Finally, we were able to obtain experimental evidence of nucleolar localization of 11 proteins, which were predicted by our platform to be associates of nucleolar complexes. We believe other biological organelles or systems could be "wired" in a similar fashion, integrating different types of data with high-throughput proteomics, followed by a detailed biological analysis and experimental validation. 相似文献
13.
Wang Y Cui T Zhang C Yang M Huang Y Li W Zhang L Gao C He Y Li Y Huang F Zeng J Huang C Yang Q Tian Y Zhao C Chen H Zhang H He ZG 《Journal of proteome research》2010,9(12):6665-6677
Analysis of the protein-protein interaction network of a pathogen is a powerful approach for dissecting gene function, potential signal transduction, and virulence pathways. This study looks at the construction of a global protein-protein interaction (PPI) network for the human pathogen Mycobacterium tuberculosis H37Rv, based on a high-throughput bacterial two-hybrid method. Almost the entire ORFeome was cloned, and more than 8000 novel interactions were identified. The overall quality of the PPI network was validated through two independent methods, and a high success rate of more than 60% was obtained. The parameters of PPI networks were calculated. The average shortest path length was 4.31. The topological coefficient of the M. tuberculosis B2H network perfectly followed a power law distribution (correlation = 0.999; R-squared = 0.999) and represented the best fit in all currently available PPI networks. A cross-species PPI network comparison revealed 94 conserved subnetworks between M. tuberculosis and several prokaryotic organism PPI networks. The global network was linked to the protein secretion pathway. Two WhiB-like regulators were found to be highly connected proteins in the global network. This is the first systematic noncomputational PPI data for the human pathogen, and it provides a useful resource for studies of infection mechanisms, new signaling pathways, and novel antituberculosis drug development. 相似文献
14.
The interactions between proteins allow the cell's life. A number of experimental, genome-wide, high-throughput studies have been devoted to the determination of protein-protein interactions and the consequent interaction networks. Here, the bioinformatics methods dealing with protein-protein interactions and interaction network are overviewed. 1. Interaction databases developed to collect and annotate this immense amount of data; 2. Automated data mining techniques developed to extract information about interactions from the published literature; 3. Computational methods to assess the experimental results developed as a consequence of the finding that the results of high-throughput methods are rather inaccurate; 4. Exploitation of the information provided by protein interaction networks in order to predict functional features of the proteins; and 5. Prediction of protein-protein interactions. 相似文献
15.
16.
Background
In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks. 相似文献17.
Current proteomic techniques allow researchers to analyze chosen biological pathways or an ensemble of related protein complexes at a global level via the measure of physical protein-protein interactions by affinity purification mass spectrometry (AP-MS). Such experiments yield information-rich but complex interaction maps whose unbiased interpretation is challenging. Guided by current knowledge on the modular structure of protein complexes, we propose a novel statistical approach, named BI-MAP, complemented by software tools and a visual grammar to present the inferred modules. We show that the BI-MAP tools can be applied from small and very detailed maps to large, sparse, and much noisier data sets. The BI-MAP tool implementation and test data are made freely available. 相似文献
18.
Modular decomposition of protein-protein interaction networks 总被引:1,自引:1,他引:1
19.
Kortemme T Joachimiak LA Bullock AN Schuler AD Stoddard BL Baker D 《Nature structural & molecular biology》2004,11(4):371-379
We developed a 'computational second-site suppressor' strategy to redesign specificity at a protein-protein interface and applied it to create new specifically interacting DNase-inhibitor protein pairs. We demonstrate that the designed switch in specificity holds in in vitro binding and functional assays. We also show that the designed interfaces are specific in the natural functional context in living cells, and present the first high-resolution X-ray crystallographic analysis of a computer-redesigned functional protein-protein interface with altered specificity. The approach should be applicable to the design of interacting protein pairs with novel specificities for delineating and re-engineering protein interaction networks in living cells. 相似文献
20.
Talavera D Williams SG Norris MG Robertson DL Lovell SC 《Journal of molecular biology》2012,419(5):387-396
The functional importance of protein-protein interactions indicates that there should be strong evolutionary constraint on their interaction interfaces. However, binding interfaces are frequently affected by amino acid replacements. Change due to coevolution within interfaces can contribute to variability but is not ubiquitous. An alternative explanation for the ability of surfaces to accept replacements may be that many residues can be changed without affecting the interaction. Candidates for these types of residues are those that make interchain interaction only through the protein main chain, β-carbon, or associated hydrogen atoms. Since almost all residues have these atoms, we hypothesize that this subset of interface residues may be more easily substituted than those that make interactions through other atoms. We term such interactions "residue type independent." Investigating this hypothesis, we find that nearly a quarter of residues in protein interaction interfaces make exclusively interchain residue-type-independent contacts. These residues are less structurally constrained and less conserved than residues making residue-type-specific interactions. We propose that residue-type-independent interactions allow substitutions in binding interfaces while the specificity of binding is maintained. 相似文献