首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Produced by many Enterobacteriaceae spp., curli are biologically important amyloid fibres that have been associated with biofilm formation, host cell adhesion and invasion, and immune system activation. CsgA is the major fibre subunit and CsgE, CsgF and CsgG are non-structural proteins involved in curli biogenesis. We have characterized the role of CsgG in curli subunit secretion across the outer membrane. Directed mutagenesis of CsgG confirmed that its activity is dependent on localization to the outer membrane. Rotary Shadow electron microscopy of purified CsgG suggested that this protein assembles into an oligomeric complex with an apparent central pore. Oligomeric CsgG complexes were confirmed using co-purification experiments. Antibiotic sensitivity assays demonstrated that overexpression of CsgG rendered Escherichia coli susceptible to the antibiotic erythromycin. A 22-amino-acid sequence at the N-terminus of CsgA was sufficient to direct heterologous proteins to the CsgG secretion apparatus. Finally, we determined that CsgG participates in an outer membrane complex with two other curli assembly proteins, CsgE and CsgF.  相似文献   

2.
Gram-negative bacteria assemble functional amyloid surface fibers called curli. CsgB nucleates the major curli subunit protein, CsgA, into a self-propagating amyloid fiber on the cell surface. The CsgG lipoprotein is sufficient for curlin transport across the outer membrane and is hypothesized to be the central molecule of the curli fiber secretion and assembly complex. We tested the hypothesis that the curli secretion protein, CsgG, was restricted to certain areas of the cell to promote the interaction of CsgA and CsgB during curli assembly. Here, electron microscopic analysis of curli-producing strains showed that relatively few cells in the population contacted curli fibers and that curli emanated from spatially discrete points on the cell surface. Microscopic analysis revealed that CsgG was surface exposed and spatially clustered around curli fibers. CsgG localization to the outer membrane and exposure of the surface domain were not dependent on any other csg-encoded protein, but the clustering of CsgG required the csg-encoded proteins CsgE, CsgF, CsgA, and CsgB. CsgG formed stable oligomers in all the csg mutant strains, but these oligomers were distinct from the CsgG complexes assembled in wild-type cells. Finally, we found that efficient fiber assembly was required for the spatial clustering of CsgG. These results suggest a new model where curli fiber formation is spatially coordinated with the CsgG assembly apparatus.  相似文献   

3.
Amyloid formation is historically associated with cytotoxicity, but many organisms produce functional amyloid fibers (e.g., curli) as a normal part of cell biology. Two E. coli genes in the curli operon encode the chaperone-like proteins CsgC and CsgE that both can reduce in vitro amyloid formation by CsgA. CsgC was also found to arrest amyloid formation of the human amyloidogenic protein α-synuclein, which is involved in Parkinson’s disease. Here, we report that the inhibitory effects of CsgC arise due to transient interactions that promote the formation of spherical α-synuclein oligomers. We find that CsgE also modulates α-synuclein amyloid formation through transient contacts but, in contrast to CsgC, CsgE accelerates α-synuclein amyloid formation. Our results demonstrate the significance of transient protein interactions in amyloid regulation and emphasize that the same protein may inhibit one type of amyloid while accelerating another.  相似文献   

4.
Curli are extracellular amyloid fibres produced by Escherichia coli that are critical for biofilm formation and adhesion to biotic and abiotic surfaces. CsgA and CsgB are the major and minor curli subunits, respectively, while CsgE, CsgF and CsgG direct the extracellular localization and assembly of curli subunits into fibres. The secretion and stability of CsgA and CsgB are dependent on the outer membrane lipoprotein CsgG. Here, we identified functional interactions between CsgG and CsgE during curli secretion. We discovered that CsgG overexpression restored curli production to a csgE strain under curli-inducing conditions. In antibiotic sensitivity and protein secretion assays, CsgG expression alone allowed translocation of erythromycin and small periplasmic proteins across the outer membrane. Coexpression of CsgE with CsgG blocked non-specific protein and antibiotic passage across the outer membrane. However, CsgE did not block secretion of proteins containing a 22-amino-acid putative outer membrane secretion signal of CsgA (A22). Finally, using purified proteins, we found that CsgE prohibited the self-assembly of CsgA into amyloid fibres. Collectively, these data indicate that CsgE provides substrate specificity to the curli secretion pore CsgG, and acts directly on the secretion substrate CsgA to prevent premature subunit assembly.  相似文献   

5.
Curli are functional amyloids expressed as fibres on the surface of Enterobacteriaceae. Contrary to the protein misfolding events associated with pathogenic amyloidosis, curli are the result of a dedicated biosynthetic pathway. A specialized transporter in the outer membrane, CsgG, operates in conjunction with the two accessory proteins CsgE and CsgF to secrete curlin subunits to the extracellular surface, where they nucleate into cross‐beta strand fibres. Here we investigate the substrate tolerance of the CsgG transporter and the capability of heterologous sequences to be built into curli fibres. Non‐native polypeptides ranging up to at least 260 residues were exported when fused to the curli subunit CsgA. Secretion efficiency depended on the folding properties of the passenger sequences, with substrates exceeding an approximately 2 nm transverse diameter blocking passage through the transport channel. Secretion of smaller passengers was compatible with prior DsbA‐mediated disulphide bridge formation in the fusion partner, indicating that CsgG is capable of translocating non‐linear polypeptide stretches. Using fusions we further demonstrate the exported or secreted heterologous passenger proteins can attain their native, active fold, establishing curli biogenesis pathway as a platform for the secretion and surface display of small heterologous proteins.  相似文献   

6.
Curli , an adhesive surface fibre produced by Escherichia coli and salmonellae, was proposed on the basis of genetic evidence to follow a distinct assembly pathway involving an extracellular intermediate of the fibre subunit CsgA, the polymerization of which can be induced at the cell surface by a 'nucleator' protein (CsgB). Here we show biochemically that CsgA is actively secreted to the extracellular milieu and that CsgB is surface located. We demonstrate that the putative curli assembly factor CsgG is an outer membrane-located lipoprotein. CsgG is highly resistant to protease digestion both in vivo and in vitro . During curli assembly, CsgG is required to maintain the stability of CsgA and CsgB. In line with this, it is possible to modulate the steady-state levels of CsgA and CsgB by varying intracellular levels of CsgG. This suggests that, in the absence of CsgG, CsgA and CsgB are proteolytically degraded. Moreover, curli production and steady-state levels of CsgA and CsgB can be increased above wild-type levels by overexpression of CsgG, meaning that the quantity of assembled curli fibres can be controlled by this lipoprotein.  相似文献   

7.
Amyloid fibers are filamentous proteinaceous structures commonly associated with mammalian neurodegenerative diseases. Nucleation is the rate-limiting step of amyloid propagation, and its nature remains poorly understood. Escherichia coli assembles functional amyloid fibers called curli on the cell surface using an evolved biogenesis machine. In vivo, amyloidogenesis of the major curli subunit protein, CsgA, is dependent on the minor curli subunit protein, CsgB. Here, we directly demonstrated that CsgB(+) cells efficiently nucleated purified soluble CsgA into amyloid fibers on the cell surface. CsgA contains five imperfect repeating units that fulfill specific roles in directing amyloid formation. Deletion analysis revealed that the N- and C-terminal most repeating units were required for in vivo amyloid formation. We found that CsgA nucleation specificity is encoded by the N- and C-terminal most repeating units using a blend of genetic, biochemical, and electron microscopic analyses. In addition, we found that the C-terminal most repeat was most aggregation-prone and dramatically contributed to CsgA polymerization in vitro. This work defines the elegant molecular signatures of bacterial amyloid nucleation and polymerization, thereby revealing how nature directs amyloid formation to occur at the correct time and location.  相似文献   

8.
Many bacteria assemble extracellular amyloid fibers on their cell surface. Secretion of proteins across membranes and the assembly of complex macromolecular structures must be highly coordinated to avoid the accumulation of potentially toxic intracellular protein aggregates. Extracellular amyloid fiber assembly poses an even greater threat to cellular health due to the highly aggregative nature of amyloids and the inherent toxicity of amyloid assembly intermediates. Therefore, temporal and spatial control of amyloid protein secretion is paramount. The biogenesis and assembly of the extracellular bacterial amyloid curli is an ideal system for studying how bacteria cope with the many challenges of controlled and ordered amyloid assembly. Here, we review the recent progress in the curli field that has made curli biogenesis one of the best-understood functional amyloid assembly pathways. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

9.
The uncontrolled formation of amyloid fibers is the hallmark of more than twenty human diseases. In contrast to disease-associated amyloids, which are the products of protein misfolding, E. coli assembles functional amyloid fibers called curli on its surface using an elegant biogenesis machine. Composed of a major subunit, CsgA, and a minor subunit, CsgB, curli play important roles in host cell adhesion, long-term survival and other bacterial community behaviors. Assembly of curli fibers is a template-directed conversion process where membrane-tethered CsgB initiates CsgA polymerization. The CsgA amyloid core is composed of five imperfect repeating units. In a series of in vivo and in vitro experiments, we determined the sequence and structural determinants that guide the initiation and propagation of CsgA polymers. The CsgA N- and C-terminal repeating units govern its polymerization and responsiveness to CsgB. Specifically, conserved glutamine and asparagine residues present in the CsgA N- and C-terminal repeating units are required for CsgB-mediated nucleation and efficient self-assembly.Key words: amyloid, nucleation, polymerization, curli, sequence determinants  相似文献   

10.
《朊病毒》2013,7(2):57-60
The uncontrolled formation of amyloid fibers is the hallmark of more than twenty human diseases. In contrast to disease-associated amyloids, which are the products of protein misfolding, E. coli assembles functional amyloid fibers called curli on its surface using an elegant biogenesis machine. Composed of a major subunit, CsgA, and a minor subunit, CsgB, curli play important roles in host cell adhesion, long-term survival and other bacterial community behaviors. Assembly of curli fibers is a template-directed conversion process where membrane-tethered CsgB initiates CsgA polymerization. The CsgA amyloid core is composed of five imperfect repeating units. In a series of in vivo and in vitro experiments, we determined the sequence and structural determinants that guide the initiation and propagation of CsgA polymers. The CsgA N- and C-terminal repeating units govern its polymerization and responsiveness to CsgB. Specifically, conserved glutamine and asparagine residues present in the CsgA N- and C-terminal repeating units are required for CsgB-mediated nucleation and efficient self-assembly.  相似文献   

11.
The discovery of intrinsic disorderness in proteins and peptide regions has given a new and useful insight into the working of biological systems. Due to enormous plasticity and heterogeneity, intrinsically disordered proteins or regions in proteins can perform myriad of functions. The flexibility in disordered proteins allows them to undergo conformation transition to form homopolymers of proteins called amyloids. Amyloids are highly structured protein aggregates associated with many neurodegenerative diseases. However, amyloids have gained much appreciation in recent years due to their functional roles. A functional amyloid fiber called curli is assembled on the bacterial cell surface as a part of the extracellular matrix during biofilm formation. The extracellular matrix that encases cells in a biofilm protects the cells and provides resistance against many environmental stresses. Several of the Csg (curli specific genes) proteins that are required for curli amyloid assembly are predicted to be intrinsically disordered. Therefore, curli amyloid formation is highly orchestrated so that these intrinsically disordered proteins do not inappropriately aggregate at the wrong time or place. The curli proteins are compartmentalized and there are chaperone-like proteins that prevent inappropriate aggregation and allow the controlled assembly of curli amyloids. Here we review the biogenesis of curli amyloids and the role that intrinsically disordered proteins play in the process.  相似文献   

12.
Amyloid formation is an ordered aggregation process, where β-sheet rich polymers are assembled from unstructured or partially folded monomers. We examined how two Escherichia coli cytosolic chaperones, DnaK and Hsp33, and a more recently characterized periplasmic chaperone, Spy, modulate the aggregation of a functional amyloid protein, CsgA. We found that DnaK, the Hsp70 homolog in E. coli, and Hsp33, a redox-regulated holdase, potently inhibited CsgA amyloidogenesis. The Hsp33 anti-amyloidogenesis activity was oxidation dependent, as oxidized Hsp33 was significantly more efficient than reduced Hsp33 at preventing CsgA aggregation. When soluble CsgA was seeded with preformed amyloid fibers, neither Hsp33 nor DnaK were able to efficiently prevent soluble CsgA from adopting the amyloid conformation. Moreover, both DnaK and Hsp33 increased the time that CsgA was reactive with the amyloid oligomer conformation-specific A11 antibody. Since CsgA must also pass through the periplasm during secretion, we assessed the ability of the periplasmic chaperone Spy to inhibit CsgA polymerization. Like DnaK and Hsp33, Spy also inhibited CsgA polymerization in vitro. Overexpression of Spy resulted in increased chaperone activity in periplasmic extracts and in reduced curli biogenesis in vivo. We propose that DnaK, Hsp33 and Spy exert their effects during the nucleation stages of CsgA fibrillation. Thus, both housekeeping and stress induced cytosolic and periplasmic chaperones may be involved in discouraging premature CsgA interactions during curli biogenesis.Key words: chaperone, curli, functional amyloid, CsgA, DnaK, Hsp33, Spy  相似文献   

13.
Microorganisms produce functional amyloids that can be examined and manipulated in vivo and in vitro. Escherichia coli assemble extracellular adhesive amyloid fibers termed curli that mediate adhesion and promote biofilm formation. We have characterized the dye binding properties of the hallmark amyloid dye, Congo red, with curliated E. coli and with isolated curli fibers. Congo red binds to curliated whole cells, does not inhibit growth, and can be used to comparatively quantify whole-cell curliation. Using Surface Plasmon Resonance, we measured the binding and dissociation kinetics of Congo red to curli. Furthermore, we determined that the binding of Congo red to curli is pH-dependent and that histidine residues in the CsgA protein do not influence Congo red binding. Our results on E. coli strain MC4100, the most commonly employed strain for studies of E. coli amyloid biogenesis, provide a starting point from which to compare the influence of Congo red binding in other E. coli strains and amyloid-producing organisms.  相似文献   

14.
Gram-negative bacteria possess specialized biogenesis machineries that facilitate the export of amyloid subunits, the fibers of which are key components of their biofilm matrix. The secretion of bacterial functional amyloid requires a specialized outer-membrane protein channel through which unfolded amyloid substrates are translocated. We previously reported the crystal structure of the membrane-spanning domain of the amyloid subunit transporter FapF from Pseudomonas. However, the structure of the periplasmic domain, which is essential for amyloid transport, is yet to be determined. Here, we present the crystal structure of the N-terminal periplasmic domain at 1.8-Å resolution. This domain forms a novel asymmetric trimeric coiled coil that possesses a single buried tyrosine residue as well as an extensive hydrogen-bonding network within a glutamine layer. This new structural insight allows us to understand this newly described functional amyloid secretion system in greater detail.  相似文献   

15.
《朊病毒》2013,7(4):323-334
Amyloid formation is an ordered aggregation process, where β-sheet rich polymers are assembled from unstructured or partially folded monomers. We examined how two Escherichia coli cytosolic chaperones, DnaK and Hsp33, and a more recently characterized periplasmic chaperone, Spy, modulate the aggregation of a functional amyloid protein, CsgA. We found that DnaK, the Hsp70 homolog in E. coli, and Hsp33, a redox-regulated holdase, potently inhibited CsgA amyloidogenesis. The Hsp33 anti-amyloidogenesis activity was oxidation dependent, as oxidized Hsp33 was significantly more efficient than reduced Hsp33 at preventing CsgA aggregation. When soluble CsgA was seeded with preformed amyloid fibers, neither Hsp33 nor DnaK were able to efficiently prevent soluble CsgA from adopting the amyloid conformation. Moreover, both DnaK and Hsp33 increased the time that CsgA was reactive with the amyloid oligomer conformation-specific A11 antibody. Since CsgA must also pass through the periplasm during secretion, we assessed the ability of the periplasmic chaperone Spy to inhibit CsgA polymerization. Like DnaK and Hsp33, Spy also inhibited CsgA polymerization in vitro. Overexpression of Spy resulted in increased chaperone activity in periplasmic extracts and in reduced curli biogenesis in vivo. We propose that DnaK, Hsp33 and Spy exert their effects during the nucleation stages of CsgA fibrillation. Thus, both housekeeping and stress induced cytosolic and periplasmic chaperones may be involved in discouraging premature CsgA interactions during curli biogenesis.  相似文献   

16.
In Gram‐negative bacteria, β‐barrel proteins are integrated into the outer membrane by the β‐barrel assembly machinery, with key components of the machinery being the Omp85 family members BamA and TamA. Recent crystal structures and cryo‐electron microscopy show a diverse set of secretion pores in Gram‐negative bacteria, with α‐helix (Wza and GspD) or β‐strand (CsgG) transmembrane segments in the outer membrane. We developed assays to measure the assembly of three distinct secretion pores that mediate protein (GspD), curli fibre (CsgG) and capsular polysaccharide (Wza) secretion by bacteria and show that depletion of BamA and TamA does not diminish the assembly of Wza, GspD or CsgG. Like the well characterised pilotins for GspD and other secretins, small periplasmic proteins enhance the assembly of the CsgG β‐barrel. We discuss a model for integral protein assembly into the bacterial outer membrane, focusing on the commonalities and differences in the assembly of Wza, GspD and CsgG.  相似文献   

17.
Amyloid is a distinct β-sheet-rich fold that many proteins can acquire. Frequently associated with neurodegenerative diseases in humans, including Alzheimer's, Parkinson's and Huntington's diseases, amyloids are traditionally considered the product of protein misfolding. However, the amyloid fold is now recognized as a ubiquitous part of normal cellular biology. Functional amyloids have been identified in nearly all facets of cellular life, with microbial functional amyloids leading the way. Unlike disease-associated amyloids, functional amyloids are assembled by dedicated, directed pathways and ultimately perform a physiological function that benefits the organism. The evolved amyloid assembly and disassembly pathways of microbes have provided novel insights into how cells have harnessed the amyloid assembly process for productive means. An understanding of functional amyloid biogenesis promises to provide a fresh perspective on the molecular events that underlie disease-associated amyloidogenesis. Here, we review functional microbial amyloids with an emphasis on curli fibers and their role in promoting biofilm formation and other community behaviors.  相似文献   

18.
19.
Amyloids are proteinaceous fibers commonly associated with neurodegenerative diseases and prion-based encephalopathies. Many different polypeptides can form amyloid fibers, leading to the suggestion that amyloid is a primitive main chain-dominated structure. A growing body of evidence suggests that amino acid side chains dramatically influence amyloid formation. The specific role fulfilled by side chains in amyloid formation, especially in vivo, remains poorly understood. Here, we determined the role of internally conserved polar and aromatic residues in promoting amyloidogenesis of the functional amyloid protein CsgA, which is the major protein component of curli fibers assembled by enteric bacteria such as Escherichia coli and Salmonella spp. In vivo CsgA polymerization into an amyloid fiber requires the CsgB nucleator protein. The CsgA amyloid core region is composed of five repeating units, defined by regularly spaced Ser, Gln and Asn residues. The results of a comprehensive alanine scan mutagenesis screen showed that Gln and Asn residues at positions 49, 54, 139 and 144 were critical for curli assembly. Alanine substitution of Q49 or N144 impeded the ability of CsgA to respond to CsgB-mediated heteronucleation, and the ability of CsgA to self-polymerize in vitro. However, CsgA proteins harboring these mutations were still seeded by preformed wild-type CsgA fibers in vitro. This suggests that CsgA-fibril-mediated seeding and CsgB-mediated heteronucleation have distinguishable mechanisms. Remarkably, Gln residues at positions 49 and 139 could not be replaced by Asn residues without interfering with curli assembly, suggesting that the side chain requirements were especially stringent at these positions. This analysis demonstrates that bacterial amyloid formation is driven by specific side chain contacts, and provides a clear illustration of the essential roles of specific side chains in promoting amyloid formation.  相似文献   

20.
The amyloid fold is usually considered a result of protein misfolding. However, a number of studies have recently shown that the amyloid structure is also used in nature for functional purposes. CsgA is the major subunit of Escherichia coli curli, one of the most well-characterized functional amyloids. Here we show, using a highly efficient approach to prepare monomeric CsgA, that in vitro fibrillation of CsgA occurs under a wide variety of environmental conditions and that the resulting fibrils exhibit similar structural features. This highlights how fibrillation is "hardwired" into amyloid that has evolved for structural purposes in a fluctuating extracellular environment and represents a clear contrast to disease-related amyloid formation. Furthermore, we show that CsgA polymerization in vitro is preceded by the formation of thin needlelike protofibrils followed by aggregation of the amyloid fibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号