首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
RNase J is a key member of the β-CASP family of metallo-β-lactamases involved in the maturation and turnover of RNAs in prokaryotes. The B.?subtilis enzyme possesses both 5'-3' exoribonucleolytic and endonucleolytic activity, an unusual property for a ribonuclease. Here, we present the crystal structure of T.?thermophilus RNase J bound to a 4 nucleotide RNA. The structure reveals an RNA-binding channel that illustrates how the enzyme functions in 5'-3' exoribonucleolytic mode and how it can function as an endonuclease. A second, negatively charged tunnel leads from the active site, and is ideally located to evacuate the cleaved nucleotide in 5'-3' exonucleolytic mode. We show that B.?subtilis RNase J1, which shows processive behavior on long RNAs, behaves distributively for substrates less than 5 nucleotides in length. We propose a model involving the binding of the RNA to the surface of the β-CASP domain to explain the enzyme's processive action.  相似文献   

2.
3.
4.
5.
6.
Mathy N  Bénard L  Pellegrini O  Daou R  Wen T  Condon C 《Cell》2007,129(4):681-692
Although the primary mechanism of eukaryotic messenger RNA decay is exoribonucleolytic degradation in the 5'-to-3' orientation, it has been widely accepted that Bacteria can only degrade RNAs with the opposite polarity, i.e. 3' to 5'. Here we show that maturation of the 5' side of Bacillus subtilis 16S ribosomal RNA occurs via a 5'-to-3' exonucleolytic pathway, catalyzed by the widely distributed essential ribonuclease RNase J1. The presence of a 5'-to-3' exoribonuclease activity in B. subtilis suggested an explanation for the phenomenon whereby mRNAs in this organism are stabilized for great distances downstream of "roadblocks" such as stalled ribosomes or stable secondary structures, whereas upstream sequences are never detected. We show that a 30S ribosomal subunit bound to a Shine Dalgarno-like element (Stab-SD) in the cryIIIA mRNA blocks exonucleolytic progression of RNase J1, accounting for the stabilizing effect of this element in vivo.  相似文献   

7.
8.
9.

Key message

Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5′ exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation.

Abstract

RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5′ end maturation is thought to be achieved by the combined action of a 5′ exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5′ exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5′ exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5′ exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.
  相似文献   

10.
Exoribonucleases are vital in nearly all aspects of RNA metabolism, including RNA maturation, end-turnover, and degradation. RNase II and RNase R are paralogous members of the RNR superfamily of nonspecific, 3'→5', processive exoribonucleases. In Escherichia coli, RNase II plays a primary role in mRNA decay and has a preference for unstructured RNA. RNase R, in contrast, is capable of digesting structured RNA and plays a role in the degradation of both mRNA and stable RNA. Deinococcus radiodurans, a radiation-resistant bacterium, contains two RNR family members. The shorter of these, DrR63, includes a sequence signature typical of RNase R, but we show here that this enzyme is an RNase II-type exonuclease and cannot degrade structured RNA. We also report the crystal structure of this protein, now termed DrII. The DrII structure reveals a truncated RNA binding region in which the N-terminal cold shock domains, typical of most RNR family nucleases, are replaced by an unusual winged helix-turn-helix domain, where the "wing" is contributed by the C-terminal S1 domain. Consistent with its truncated RNA binding region, DrII is able to remove 3' overhangs from RNA molecules closer to duplexes than do other RNase II-type enzymes. DrII also displays distinct sensitivity to pyrimidine-rich regions of single-stranded RNA and is able to process tRNA precursors with adenosine-rich 3' extensions in vitro. These data indicate that DrII is the RNase II of D. radiodurans and that its structure and catalytic properties are distinct from those of other related enzymes.  相似文献   

11.
Bacterial ribonuclease P (RNase P), an enzyme involved in tRNA maturation, consists of a catalytic RNA subunit and a protein cofactor. Comparative phylogenetic analysis and molecular modeling have been employed to derive secondary and tertiary structure models of the RNA subunits from Escherichia coli (type A) and Bacillus subtilis (type B) RNase P. The tertiary structure of the protein subunit of B.subtilis and Staphylococcus aureus RNase P has recently been determined. However, an understanding of the structure of the RNase P holoenzyme (i.e. the ribonucleoprotein complex) is lacking. We have now used an EDTA-Fe-based footprinting approach to generate information about RNA-protein contact sites in E.coli RNase P. The footprinting data, together with results from other biochemical and biophysical studies, have furnished distance constraints, which in turn have enabled us to build three-dimensional models of both type A and B versions of the bacterial RNase P holoenzyme in the absence and presence of its precursor tRNA substrate. These models are consistent with results from previous studies and provide both structural and mechanistic insights into the functioning of this unique catalytic RNP complex.  相似文献   

12.
Reliable determination of RNA secondary structure depends on both computer algorithms and experimental probing of nucleotides in single- or double-stranded conformation. Here we describe the exploitation of the endonucleolytic activity of the Bacillus subtilis enzyme RNase J1 as a probe of RNA structure. RNase J1 cleaves in single-stranded regions and, in vitro at least, the enzyme has relatively relaxed nucleotide specificity. We confirmed the feasibility of the approach on an RNA of known structure, B. subtilis tRNAThr. We then used RNase J1 to solve the secondary structure of the 5′ end of the hbs mRNA. Finally, we showed that RNase J1 can also be used in footprinting experiments by probing the interaction between the 30S ribosomal subunit and the Shine–Dalgarno element of the hbs mRNA.  相似文献   

13.
14.
Bacillus subtilis RNAase III cleavage sites in phage SP82 early mRNA   总被引:8,自引:0,他引:8  
A T Panganiban  H R Whiteley 《Cell》1983,33(3):907-913
We have determined the DNA sequence encoding three sites in Bacillus subtilis phage SP82 early mRNA that are cleaved by a B. subtilis processing endonuclease. The products generated by cleavage of the RNA were sequenced to determine the exact points of RNA strand scission. We propose that the RNA surrounding each processing site forms a stable stem-loop structure and that cleavage occurs at the 5- side of specific adenosine residues located on the loop. The model is consistent with our previous observations that the active site of the enzyme recognizes double-stranded RNA. S1 mapping experiments with RNA-DNA hybrids established that the same cleavage sites are used both in vivo and in vitro. Examination of the B. subtilis processing sites on SP82 mRNA reveals distinctive features of primary and secondary structure that are not present in any of the E. coli RNAase III processing sites previously studied.  相似文献   

15.
16.
Bacterial ribonuclease P (RNase P) belongs to a class of enzymes that utilize both RNAs and proteins to perform essential cellular functions. The bacterial RNase P protein is required to activate bacterial RNase P RNA in vivo, but previous studies have yielded contradictory conclusions regarding its specific functions. Here, we use biochemical and biophysical techniques to examine all of the proposed functions of the protein in both Escherichia coli and Bacillus subtilis RNase P. We demonstrate that the E. coli protein, but not the B. subtilis protein, stabilizes the global structure of RNase P RNA, although both proteins influence holoenzyme dimer formation and precursor tRNA recognition to different extents. By comparing each protein in complex with its cognate and noncognate RNA, we show that differences between the two types of holoenzymes reside primarily in the RNA and not the protein components of each. Our results reconcile previous contradictory conclusions regarding the role of the protein and support a model where the protein activates local RNA structures that manifest multiple holoenzyme properties.  相似文献   

17.
18.
The late steps of both 16S and 5S ribosomal RNA maturation in the Gram-positive bacterium Bacillus subtilis have been shown to be catalysed by ribonucleases that are not present in the Gram-negative paradigm, Escherichia coli. Here we present evidence that final maturation of the 5' and 3' extremities of B. subtilis 23S rRNA is also performed by an enzyme that is absent from the Proteobacteria. Mini-III contains an RNase III-like catalytic domain, but curiously lacks the double-stranded RNA binding domain typical of RNase III itself, Dicer, Drosha and other well-known members of this family of enzymes. Cells lacking Mini-III accumulate precursors and alternatively matured forms of 23S rRNA. We show that Mini-III functions much more efficiently on precursor 50S ribosomal subunits than naked pre-23S rRNA in vitro, suggesting that maturation occurs primarily on assembled subunits in vivo. Lastly, we provide a model for how Mini-III recognizes and cleaves double-stranded RNA, despite lacking three of the four RNA binding motifs of RNase III.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号