首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, impedance measurement of electrolyte-insulator-semiconductor (EIS) structure with high spatial resolution was proposed to monitor cell adhesion. The light addressing ability of this work overcomes the geometrical restrict of cell culture on conventional impedance detection devices such as interdigitated electrode (IDE) and electric cell-substrate impedance sensing (ECIS). Instead of studying cells on predetermined sites of IDE and ECIS, cells cultured anywhere on EIS sensor surface can be addressed and selected as target cells. Principle and primary models for high resolution impedance detection were described and tested by experiments. The EIS sensor was investigated in terms of its intrinsic characteristics, like impedance behavior, voltage characteristic, frequency dependency and photovoltaic effect. Optimized working condition was studied for cell experiments. Cell adhesion under treatment of 0.1% Triton X-100 was monitored using rat kidney cells as the source. Results showed good sensitivity (10% change of impedance) and resolution (40 μm) for cell adhesion impedance detection and suggested this work should be suitable for monitoring cell impedance. Further improvements on sensitivity, spatial resolution were discussed as well as the further applications for single cell monitoring and cell adhesion imaging.  相似文献   

2.
Apoptosis is a strictly regulated and genetically encoded cell 'suicide' that may be triggered by cytokines, depletion of growth factors or certain chemicals. It is morphologically characterized by severe alterations in cell shape like cell shrinkage and disintegration of cell-cell contacts. We applied a non-invasive electrochemical technique referred to as electric cell-substrate impedance sensing (ECIS) in order to monitor the apoptosis-induced changes in cell shape in an integral and quantitative fashion with a time resolution in the order of minutes. In ECIS the cells are grown directly on the surface of small gold-film electrodes (d = 2 mm). From readings of the electrical impedance of the cell-covered electrode, performed with non-invasive, low amplitude sensing voltages, it is possible to deduce alterations in cell-cell and cell-substrate contacts. To improve the sensitivity of this impedance assay we used endothelial cells derived from cerebral micro-vessels as cellular model systems since these are well known to express electrically tight intercellular junctions. Apoptosis was induced by cycloheximide (CHX) and verified by biochemical and cytological assays. The time course of cell shape changes was followed with unprecedented time resolution by impedance readings at 1 kHz and correlated with biochemical parameters. From impedance readings along a broad frequency range of 1-10(6) Hz we could assign the observed impedance changes to alterations on the subcellular level. We observed that disassembly of barrier-forming tight junctions precedes changes in cell-substrate contacts and correlates strongly with the time course of protease activation.  相似文献   

3.
A PDMS-glass based micro-device was designed and fabricated with 12 coplanar impedance sensors integrated for electrical cell-substrate impedance sensing (ECIS). The sensitivity and frequency characteristics of the sensors were investigated both theoretically (equivalent circuit model) and experimentally for the commonly used micro-electrode dimension scale (20-80 microm). The experimental results matched well with the theoretical model analysis and revealed that, within this micro-electrode dimension scale, as the electrode width decreased or as the total electrode length decreased the sensitivity of sensor increased over the whole sensing frequency range, whilst electrode to electrode distance had no influence on sensitivity. Through our frequency characteristics analysis, the whole frequency range could be divided into four parts. New functions describing the dominant components in each frequency range were defined and validated experimentally, and could be used to explain the phenomenon of an ECIS sensing frequency window. The contribution to the impedance measurement of cells growing on the edges of the electrodes was determined for the first time. Finally, novel proposals for ECIS sensor design and ECIS measurements were presented.  相似文献   

4.
A novel transcellular micro-impedance biosensor, referred to as the electric cell-substrate impedance sensor or ECIS, has become increasingly applied to the study and quantification of endothelial cell physiology. In principle, frequency dependent impedance measurements obtained from this sensor can be used to estimate the cell–cell and cell–matrix impedance components of endothelial cell barrier function based on simple geometric models. Few studies, however, have examined the numerical optimization of these barrier function parameters and established their error bounds. This study, therefore, illustrates the implementation of a multi-response Levenberg–Marquardt algorithm that includes instrumental noise estimates and applies it to frequency dependent porcine pulmonary artery endothelial cell impedance measurements. The stability of cell–cell, cell–matrix and membrane impedance parameter estimates based on this approach is carefully examined, and several forms of parameter instability and refinement illustrated. Including frequency dependent noise variance estimates in the numerical optimization reduced the parameter value dependence on the frequency range of measured impedances. The increased stability provided by a multi-response non-linear fit over one-dimensional algorithms indicated that both real and imaginary data should be used in the parameter optimization. Error estimates based on single fits and Monte Carlo simulations showed that the model barrier parameters were often highly correlated with each other. Independently resolving the different parameters can, therefore, present a challenge to the experimentalist and demand the use of non-linear multivariate statistical methods when comparing different sets of parameters.  相似文献   

5.
This study presents the time-resolved detection of chemically induced stress upon intracellular signaling cascades by using genetically modified sensor cells based on the human keratinocyte cell line HaCaT. The cells were stably transfected with a HSP72-GFP reporter gene construct to create an optical sensor cell line expressing a stress-inducible reporter protein. The time- and dose-dependent performance of the sensor cells is demonstrated and discussed in comparison to a label-free impedimetric monitoring approach (electric cell-substrate impedance sensing, ECIS). Moreover, a microfluidic platform was established based on μSlidesI(0,4)Luer to allow for a convenient, sterile and incubator-independent time-lapse microscopic observation of the sensor cells. Cell growth was successfully achieved in this microfluidic setup and the cellular response to a cytotoxic substance could be followed in real-time and in a non-invasive, sensitive manner. This study paves the way for the development of micro-total analysis systems that combine optical and impedimetric readouts to enable an overall quantitative characterization of changes in cell metabolism and morphology as a response to toxin exposure. By recording multiple parameters, a detailed discrimination between competing stress- or growth-related mechanisms is possible, thereby presenting an entirely new in vitro alternative to skin irritation tests.  相似文献   

6.
We have developed a novel method, (ECIS/taxis), for monitoring cell movement in response to chemotactic and chemokinetic factors. In this system, cells migrate in an under-agarose environment, and their positions are monitored using the electric cell-substrate impedance sensor technology to measure the impedance change at a target electrode, that is lithographed onto the substrate, as the cells arrive at the target. In the studies reported here, Dictyostelium discoideum was used as a prototypical, motile eukaryotic cell. Using the ECIS/taxis system, the arrival of cells at the target electrode was proportional to the dose offolate used to stimulate the cells and could be assessed by changes in resistance at the electrode. ECIS/taxis was readily able to distinguish between wild-type cells and a mutant that is deficient in its chemotactic response. Finally, we have shown that an agent that interferes with chemotactic motility leads to the delayed arrival of cells at the target electrode. The multi-well assay configuration allows for simultaneous automated screening of many samples for chemotactic or anti-chemotactic activity. This assay system is compatible with measurements of mammalian cell movement and should be valuable in the assessment of both agonists and antagonists of cell movement.  相似文献   

7.
Transepithelial resistance (TER) measurement has often been used to study the paracellular transport properties of epithelia grown on permeable filters, especially the barrier function of tight junctions. However, the TER value includes another source, the resistance caused by cell-substrate contact, that may give rise to a high TER value if cell-substrate separation is small. In this study we use electric cell-substrate impedance sensing (ECIS) to measure both paracellular resistance and the average cell-substrate distance of MDCK (II), HEp-2, and WI-38 VA13 cells. Comparing ECIS data with those from TER measurements of cell layers cultured on polycarbonate filters, we can obtain the approximate extra resistance resulting from cell-substrate contact for each cell type. The value of cell-substrate resistance was also estimated by two theoretical calculations that bracket the true values. Our results demonstrate that cell-substrate contact substantially influences the TER data measured using polycarbonate filters and that the extra resistance due to cell-substrate spaces depends on both cell type and filter property.  相似文献   

8.
Induction of differentiation in cancer stem cells by drug treatment represents an important approach for cancer therapy. The understanding of the mechanisms that regulate such a forced exit from malignant pluripotency is fundamental to enhance our knowledge of tumour stability. Certain nucleoside analogues, such as 2′-deoxy-5-azacytidine and 1β-arabinofuranosylcytosine, can induce the differentiation of the embryonic cancer stem cell line NTERA 2 D1 (NT2). Such induced differentiation is associated with drug-dependent DNA-damage, cellular stress and the proteolytic depletion of stem cell factors. In order to further elucidate the mode of action of these nucleoside drugs, we monitored differentiation-specific changes of the dielectric properties of growing NT2 cultures using electric cell-substrate impedance sensing (ECIS). We measured resistance values of untreated and retinoic acid treated NT2 cells in real-time and compared their impedance profiles to those of cell populations triggered to differentiate with several established substances, including nucleoside drugs. Here we show that treatment with retinoic acid and differentiation-inducing drugs can trigger specific, concentration-dependent changes in dielectric resistance of NT2 cultures, which can be observed as early as 24 hours after treatment. Further, low concentrations of nucleoside drugs induce differentiation-dependent impedance values comparable to those obtained after retinoic acid treatment, whereas higher concentrations induce proliferation defects. Finally, we show that impedance profiles of substance-induced NT2 cells and those triggered to differentiate by depletion of the stem cell factor OCT4 are very similar, suggesting that reduction of OCT4 levels has a dominant function for differentiation induced by nucleoside drugs and retinoic acid. The data presented show that NT2 cells have specific dielectric properties, which allow the early identification of differentiating cultures and real-time label-free monitoring of differentiation processes. This work might provide a basis for further analyses of drug candidates for differentiation therapy of cancers.  相似文献   

9.
BackgroundColorectal adenocarcinoma cells (Caco-2) are a widely used model of intestinal barrier to study cancer development, toxicological assessments, absorption and metabolism in food science or drug discovery. Caco-2 spontaneously differentiate into a monolayer expressing several specific characteristics, typically showed by mature enterocytes. For in vitro experiments, it is crucial to identify non-invasive and non-destructive techniques able to evaluate the integrity and differentiation of the cells monolayer. Thus, we aimed to assess these properties by analyzing electrical impedance measurements.MethodsCaco-2 cells were differentiated for 21 days. The monolayer integrity and differentiation were primarily evaluated by means of morphological, biochemical and molecular data. Impedance measurements in a range of frequencies from 400 Hz to 50 kHz were performed using a dedicated set up, including customized Aerosol Jet Printed carbon-based sensors.ResultsThe trends of RI observed at three different frequencies were able to describe cell growth and differentiation. In order to evaluate which frequencies better correlate with cell differentiation, Principal Component Analysis have been employed and the concordance analysis between RI magnitude and morphological, biochemical and molecular data, highlighted 40 kHz as the optimal frequency to assess Caco-2 cells differentiation process.ConclusionWe demonstrated the feasibility and reliability of applying impedance-based measurements not only to provide information about the monolayer status, but also for cell differentiation monitoring.General significanceThis study underlined the possibility to use a dedicated sensor to assess the integrity and differentiation of Caco-2 monolayer, as a reliable non-destructive alternative to conventional approaches.  相似文献   

10.
Impedance of renal vascular smooth muscle cells (VSMCs) cultured on microelectrodes was measured by electric cell-substrate impedance sensing. Changes in measured impedance as a function of frequency were compared with the calculated values obtained from an extended cell-electrode model to estimate the junctional resistance, distance between the ventral cell surface and the substratum, and apical and basolateral membrane capacitances of renal VSMCs. This cell-electrode model was derived to accommodate the slender and rectangular shape of VSMCs. The calculated changes in impedance (Zcal) based on the model agreed well with the experimental measurement (Zexp), and the percentage error defined as |(ZcalZexp)/Zexp| was 1.0%. To test the sensitivity of the new model for capturing changes in cell-cell and cell-substrate interactions induced by changes in cellular environment, we then applied this model to analyze timpedance changes induced by an integrin binding peptide in renal VSMCs. Our result demonstrates that integrin binding peptide decreases junctional resistance between cells, increases the distance between the basolateral cell surface and substratum, and increases the apical membrane capacitance, whereas the basolateral membrane capacitance stays relatively stable. This model provides a generic approach for impedance analysis of cell layers composed of slender, rectangular cells. electric cell-substrate impedance sensing; cell attachment; cell adhesion; extracellular matrix; integrin  相似文献   

11.
Assessment of cytotoxicity by impedance spectroscopy   总被引:1,自引:0,他引:1  
This paper describes a simple and convenient method to monitor on-line cell adhesion by electrical impedance measurements. Immortalized mouse fibroblasts, BALB/3T3, were cultured onto interdigitated electrode structures integrated into the bottom of an in-house fabricated device. Impedance modulus, phase, real and imaginary parts were considered separately and plotted as function of frequency and time to better understand and select the component giving more information on cell adhesion changes. For cytotoxicity assessment, the cells were treated with different concentrations of sodium arsenite used as model toxicant and their responses were monitored on-line. The half inhibition concentration, the required concentration to achieve 50% inhibition, derived from the measurements fall between the results obtained using standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test and colony forming efficiency assay confirming the good sensitivity of the system. In term of impedance signal, the modulus results was found to be the most sensitive of the considered components for cytotoxicity testing of chemicals.  相似文献   

12.
The monitoring and evaluation of cell behaviors under various concentrations of diffusible molecules or drugs are important in drug screening and in many other types of biological studies. In the current study, a novel polydimethylsiloxane (PDMS)-based microfluidic device was established for the real-time monitoring of drug-induced cytotoxicity using electric cell-substrate impedance sensing (ECIS). This device consists of the following three components: a drug gradient generator, planar air-bubble valves, and parallel cell culture cavities that are combined with impedance-sensing electrodes. The gradient generator allows for the simultaneous administration of multiple drug doses to test the functional cytotoxicity, and the incorporated impedance sensing enables the dynamic, automatic and quantitative measurement of in vitro dose-dependent drug responses. The air-bubble valve presented here allows the automatic closure of the valve without the need for any external valve-control instrument. As a proof-of-concept demonstration, this device was applied to dynamically monitor the effects of the anticancer drug cisplatin on apoptosis in four cancer cell lines, which may be useful for drug discovery and other biological studies that require automated analysis combined with concentration gradients.  相似文献   

13.
A high density microelectrode array biosensor was developed for the detection of Escherichia coli O157:H7. The biosensor was fabricated from (100) silicon with a 2 microm layer of thermal oxide as an insulating layer, an active area of 9.6 mm2 and consists of an interdigitated gold electrode array. The sensor surface was functionalised for bacterial detection using heterobifunctional crosslinkers and immobilised polyclonal antibodies to create a biological sensing surface. Bacteria suspended in solution became attached to the immobilised antibodies when the biosensor was tested in liquid samples. The change in impedance caused by the bacteria was measured over a frequency range of 100 Hz-10 M Hz. The biosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The biosensor was able to discriminate between cellular concentrations of 10(4)-10(7)CFU/mL and has applications in detecting pathogens in food samples.  相似文献   

14.
An artificial taste sensor based on conducting polymers   总被引:3,自引:0,他引:3  
Pure and composite nanostructured films of conducting polymers were used as individual sensing units constituting an electronic tongue. The use of extremely thin films for signal transduction via impedance spectroscopy measurements in the frequency range 10-1 MHz allows the detection of trace amounts of tastants and inorganic contaminants in liquid systems. In addition, the sensor could detect the suppression of sourness by sweetness displaying similarities with the biological system. Brands of several commercial beverages could be easily distinguished without complex analysis, including the discrimination of waters, tastants and wines.  相似文献   

15.
Impedance spectroscopy (IS) is a powerful technique for analysis of the complex electrical impedance of a large variety of biological systems, because it is sensitive both to surface phenomena and to changes of bulk properties. A simple and convenient method of analysis of cell properties by IS is described. An interdigitated electrodes configuration was used for the measurements; human epithelial cells were grown on the device to investigate the complex dielectric response as a function of frequency, in order to test the suitability of the device for use as a label-free biosensor. To test the ability of the device to detect channels in the cell membrane, the effect of drugs known to affect membrane integrity was also investigated. The frequency response of the admittance (i.e. the reciprocal of the impedance) can be well fitted by a model based on very simple assumptions about the cells coating the device surface and the current flow; from the calculations, membrane-specific capacitance and information about cell adhesion can be inferred. These preliminary efforts have shown that our configuration could lead to a label-free non-invasive technique for biosensing and cellular behavior monitoring which might prove useful in investigation of the basic properties of cells and the effect of drugs by estimation of some fundamental properties and modification of the electrical characteristics of the device.  相似文献   

16.
C M Lo  C R Keese    I Giaever 《Biophysical journal》1995,69(6):2800-2807
Transepithelial impedance of Madin-Darby canine kidney cell layers is measured by a new instrumental method, referred to as electric cell-substrate impedance sensing. In this method, cells are cultured on small evaporated gold electrodes, and the impedance is measured in the frequency range 20-50,000 Hz by a small probing current. A model for impedance analysis of epithelial cells measured by this method is developed. The model considers three different pathways for the current flowing from the electrode through the cell layer: (1) in through the basal and out through the apical membrane, (2) in through the lateral and out through the apical membrane, and (3) between the cells through the paracellular space. By comparing model calculation with experimental impedance data, several morphological and cellular parameters can be determined: (1) the resistivity of the cell layer, (2) the average distance between the basal cell surface and substratum, and (3) the capacitance of apical, basal, and lateral cell membranes. This model is used to analyze impedance changes on removal of Ca2+ from confluent Mardin-Darby canine kidney cell layers. The method shows that reduction of Ca2+ concentration causes junction resistance between cells to drop and the distance between the basal cell surface and substratum to increase.  相似文献   

17.
Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.  相似文献   

18.
This work describes the application of an impedance-based measurement for the real time evaluation of targeted tumor therapies in cell culture (HeLa cells). We used a treatment procedure that is well established in cells and mice. Therein, tumor cells are treated with a combination of an epidermal growth factor-based targeted toxin named SE and particular plant glycosides called saponins. In the present study HeLa cells were seeded in different numbers onto interdigitated electrode structures integrated into the bottom of a 96 well plate. The cells were treated with SE in the presence and absence of the saponin SpnS-1 (isolated from Saponaria officinalis roots). The impedance was directly correlated with the viability of the cells. As expected from known end point measurements, a concentration dependent enhancement of toxicity was observed; however, with the impedance measurement we were for the first time able to trace the temporal changes of cell death during the combination treatment. This substantially added to the understanding of initial cellular mechanisms in the augmentation of the toxicity of targeted toxins by saponins and indicated the superiority of real time monitoring over end point assays. The method is less labor intensive and label-free with ease of monitoring the effects at each time point.  相似文献   

19.
Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).  相似文献   

20.
In this study adherent animal cells were grown to confluence on circular gold-film electrodes of 250 μm diameter that had been deposited on the surface of a regular culture dish. The impedance of the cell-covered electrode was measured at designated frequencies to monitor the behavior of the cells with time. This approach is referred to as electric cell-substrate impedance sensing or short ECIS in the literature. The gold-film electrodes were also used to deliver well-defined AC voltage pulses of several volts amplitude and several hundred milliseconds duration to the adherent cells in order to achieve reversible membrane electroporation (in situ electroporation=ISE). Electroporation-assisted introduction of membrane impermeable molecules into the cytoplasm was studied by using FITC-labeled dextran molecules of different molecular weights. Probes as big as 2MDa were successfully loaded into the cells residing on the electrode surface. Time-resolved impedance measurements before and immediately after the electroporation pulse revealed the kinetics of membrane resealing as well as subsequent changes in cell morphology. Cells recovered from the electroporation pulse within less than 90 min. When membrane-impermeable, bioactive compounds like N(3)(-) or bleomycin were introduced into the cells by in situ electroporation, concomitant ECIS readings sensitively reported on the associated response of the cells to these toxins as a function of time (ISE-ECIS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号