首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secretion of the Escherichia coli toxin hemolysin A (HlyA) is catalyzed by the membrane protein complex HlyB-HlyD-TolC and requires a secretion sequence located within the last 60 amino acids of HlyA. The Hly translocator complex exports a variety of passenger proteins when fused N-terminal to this secretion sequence. However, not all fusions are secreted efficiently. Here, we demonstrate that the maltose binding protein (MalE) lacking its natural export signal and fused to the HlyA secretion signal is poorly secreted by the Hly system. We anticipated that folding kinetics might be limiting secretion, and we therefore introduced the "folding" mutation Y283D. Indeed this mutant fusion protein was secreted at a much higher level. This level was further enhanced by the introduction of a second MalE folding mutation (V8G or A276G). Secretion did not require the molecular chaperone SecB. Folding analysis revealed that all mutations reduced the refolding rate of the substrate, whereas the unfolding rate was unaffected. Thus, the efficiency of secretion by the Hly system is dictated by the folding rate of the substrate. Moreover, we demonstrate that fusion proteins defective in export can be engineered for secretion while still retaining function.  相似文献   

2.
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, there are often problems in recovering substantial yields of correctly folded proteins. One approach to solve these problems is to have recombinant proteins secreted into the periplasmic space or culture medium. The secretory production of recombinant proteins has several advantages, such as simplicity of purification, avoidance of protease attack and N-terminal Met extension, and a better chance of correct protein folding. In addition to the well-established Sec system, the twin-arginine translocation (TAT) system has recently been employed for the efficient secretion of folded proteins. Various strategies for the extracellular production of recombinant proteins have also been developed. For the secretory production of complex proteins, periplasmic chaperones and protease can be manipulated to improve the yields of secreted proteins. This review discusses recent advances in secretory and extracellular production of recombinant proteins using E. coli.  相似文献   

3.
Two enzymes, the secreted Staphylococcus aureus nuclease A and the Klenow fragment of the cytoplasmic Escherichia coli DNA polymerase I, were fused, at the genetic level, to MalE, the periplasmic maltose-binding protein of E. coli, or to a signal-sequence mutant. The hybrid proteins were synthesized in large amounts by E. coli under control of promoter malEp. The synthesis was repressed with glucose and could be totally switched off in a malT mutant strain. The hybrid between MalE and the nuclease was exported into the periplasmic space. Several criteria demonstrated that a fraction of the hybrid chains with the Klenow polymerase was exported to the periplasm in a signal-sequence-specific manner and ruled out the possibility of a membrane leakage. The hybrid with the Klenow polymerase was not exported and remained in the cytoplasm when carrying a tight signal-sequence mutation in its MalE portion. The hybrid proteins were purified in one step by affinity chromatography on cross-linked amylose. Most of the hybrid chains in the periplasm but only a fraction of those in the other cell compartments had their MalE portion correctly folded. The nuclease and the Klenow polymerase had their full specific activities in the purified hybrids. The potential of MalE as a vector for the production, export and purification of desirable proteins in E. coli is discussed.  相似文献   

4.
Live attenuated Salmonella strains have been extensively explored as oral delivery systems for recombinant vaccine antigens and effector proteins with immunoadjuvant and immunomodulatory potential. The feasibility of this approach was demonstrated in human vaccination trials for various antigens. However, immunization efficiencies with live vaccines are generally significantly lower compared to those monitored in parenteral immunizations with the same vaccine antigen. This is, at least partly, due to the lack of secretory expression systems, enabling large-scale extracellular delivery of vaccine and effector proteins by these strains. Because of their low complexity and the terminal location of the secretion signal in the secreted protein, Type I (ATP-binding cassette) secretion systems appear to be particularly suited for development of such recombinant extracellular expression systems. So far, the Escherichia coli hemolysin system is the only Type I secretion system, which has been adapted to recombinant protein secretion in Salmonella. However, this system has a number of disadvantages, including low secretion capacity, complex genetic regulation, and structural restriction to the secreted protein, which eventually hinder high-level in vivo delivery of recombinant vaccines and effector proteins. Thus, the development of more efficient recombinant protein secretion systems, based on Type I exporters can help to improve efficacies of live recombinant Salmonella vaccines. Type I secretion systems, mediating secretion of bacterial surface layer proteins, such as RsaA in Caulobacter crescentus, are discussed as promising candidates for improved secretory delivery systems.  相似文献   

5.
Bovine somatotropin (bST) was secreted from Escherichia coli at moderate levels of 1-2 micrograms/ml/OD using expression vectors in which the bST gene was fused to the lamB secretion signal. To study the secretion properties of bST in E.coli further, two approaches for modifying the secretion signal were employed. In the first case, fusion proteins were constructed with six alternative bacterial secretion signals: three from E.coli proteins (HisJ, MalE and OmpA), two from bacteriophage proteins (M13 coat protein and PA-2 Lc) and one from the chitinase A protein of Serratia marcescens. The results, as monitored by Western blot analysis of both total cell protein and the periplasmic fraction, showed that these changes in the secretion signal did not significantly affect the secretion properties of bST. In the second approach, a library of random mutations was created in the lamB secretion signal and 200 independent clones were screened. The level of secreted bST was determined by growing individual clones in duplicate in microtiter wells, inducing protein expression and measuring the bST released by osmotic shock using a particle concentration fluorescent immunoassay. The secretion properties of several novel variants in the LamB signal peptide are presented.  相似文献   

6.
7.
Mutations in the preproinsulin protein that affect processing of preproinsulin to proinsulin or lead to misfolding of proinsulin are associated with diabetes. We examined the subcellular localization and secretion of 13 neonatal diabetes-associated human proinsulin proteins (A24D, G32R, G32S, L35P, C43G, G47V, F48C, G84R, R89C, G90C, C96Y, S101C and Y108C) in rat INS-1 insulinoma cells. These mutant proinsulin proteins accumulate in the endoplasmic reticulum (ER) and are poorly secreted except for G84R and in contrast to wild-type and hyperproinsulinemia-associated mutant proteins (H34D and R89H) which were sorted to secretory granules and efficiently secreted. We also examined the effect of C96Y mutant proinsulin on the synthesis and secretion of wild-type insulin and observed a dominant-negative effect of the mutant proinsulin on the synthesis and secretion of wild-type insulin due to induction of the unfolded protein response and resulting attenuation of overall translation.  相似文献   

8.
Filamentous fungi have a high capacity for producing large amounts of secreted proteins, a property that has been exploited for commercial production of recombinant proteins. However, the secretory pathway, which is key to the production of extracellular proteins, is rather poorly characterized in filamentous fungi compared to yeast. We report the effects of recombinant protein secretion on gene expression levels in Aspergillus nidulans by directly comparing a bovine chymosin-producing strain with its parental wild-type strain in continuous culture by using expressed sequence tag microarrays. This approach demonstrated more subtle and specific changes in gene expression than those observed when mimicking the effects of protein overproduction by using a secretion blocker. The impact of overexpressing a secreted recombinant protein more closely resembles the unfolded-protein response in vivo.  相似文献   

9.
Enzymes can be fused at the C-terminal end of the maltose binding protein (MalE), at the genetic level. Expression of the hybrid proteins, under control of promoter malEp and of the constitutive activator, MalTc1, can be repressed by glucose. The hybrid proteins are localised either in the bacterial cytoplasm or periplasmic space, depending on whether MalE harbors a signal peptide mutation or not; as MalE, they can be purified in one step by chromatography on cross-linked amylose. The Staphylococcus aureus Nuclease and the Klenow portion of E. coli DNA-polymerase I keep their specific activities when fused to MalE.  相似文献   

10.
Farrell PJ  Behie LA  Iatrou K 《Proteins》2000,41(1):144-153
Production of recombinant proteins that are not secreted outside the producing cells usually requires purification steps that can result in significant yield reductions and loss of biological activity. Using insect cells as a model system to devise the means for secreting recombinant proteins that are not normally destined for secretion outside the producing cells, we initially examined the ability of an insect-specific signal peptide sequence to direct secretion of two intracellular proteins (the cytoplasmic enzyme chloramphenicol acetyl transferase [CAT] and the nuclear protein Bombyx mori chorion factor 1 [BmCF1]) expressed in transfected silkmoth cells. Although this signal sequence functioned efficiently as a chimera with normally secreted proteins, it failed to secrete CAT and BmCF1, suggesting that additional signals are required for passage of these polypeptides through the secretion pathway. For this reason, we also generated a secretion module consisting of the secreted protein juvenile hormone esterase (JHE), a spacer region containing a histidine tag and an endopeptidase cleavage site, to which coding sequences of choice can be cloned as C-terminal extensions. In C-terminal fusions with the CAT and BmCF1 open reading frames, the N-terminal JHE moiety was able to provide all the signals necessary for secretion of CAT and BmCF1 into the extracellular environment. The histidine tag present in the spacer region allowed purification of fusion proteins by metal affinity chromatography under nondenaturing conditions, and the enteropeptidase cleavage site was recognized and cleaved by the cognate protease causing the release of the intracellular proteins from the secretion module. We also show that another secreted protein, human granulocyte-macrophage colony stimulating factor (GM-CSF) can substitute for JHE in the secretion module and that these secretion modules can function in mammalian cells.  相似文献   

11.
E. coli is one of the most commonly used host strains for recombinant protein production. However, recombinant proteins are usually found intracellularly, in either cytoplasm or periplasmic space. Inadequate secretion to the extracellular environment is one of its limitations. This study addresses the outer membrane barrier for the translocation of recombinant protein directed to the periplasmic space. Specifically, using recombinant maltose binding protein (MalE), xylanase, and cellulase as model proteins, we investigated whether the lpp deletion could render the outer membrane permeable enough to allow extracellular protein production. In each case, significantly higher excretion of recombinant protein was observed with the lpp deletion mutant. Up to 90% of the recombinant xylanase activity and 70% of recombinant cellulase activity were found in the culture medium with the deletion mutant, whereas only 40-50% of the xylanase and cellulase activities were extracellular for the control strain. Despite the weakened outer membrane in the mutant strain, cell lysis did not occur, and increased excretion of periplasmic protein was not due to cell lysis. The lpp deletion is a simple method to generate an E. coli strain to effect significant extracellular protein production. The phenotype of extracellular protein production without cell lysis is useful in many biotechnological applications, such as bioremediation and plant biomass conversion.  相似文献   

12.
Secretion of recombinant proteins in heterologous host has drawn attention for its simpler purification and downstream processes. Searching for secretion aid molecules to improve protein secretion can be done through synthetic biology, screening of genome data and proteome-based approach. In the present study, the extracellular proteome on starch-containing medium of Bacillus lehensis G1 was analyzed to identify naturally secreted proteins with signal peptide. A total of 87 protein spots were identified by mass spectrometry, which were categorized mostly in the metabolism of carbohydrates and related molecules (20%). Over-expression and secretion studies were performed for all the 14 selected signal peptides fused to a reporter protein, cyclomaltodextrin glucanotransferase (CGTase). All clones were found to allow CGTase to be excreted into the medium, as observed and measured from the iodine plate assay and enzyme activity assay. Compared to native signal peptide (G1) of CGTase, signal peptide of GlcNAc-binding protein A (GAP) significantly improved CGTase activities by 735% and 205% in extracellular and periplasmic compartment, respectively, with an increase of only ∼1.7 fold the amount of β-galactosidase (cell lysis) in the medium. GAP has the highest secretion rate of 45.6 U/ml/h among all clones, where physicochemical characteristics of signal peptide play significant role.  相似文献   

13.
To study the relationship between cell growth control, cell contact, and protein secretion, we examined the production of plasminogen activator, procollagen, and fibronectin by Chinese hamster ovary (CHO) fibroblasts, both as a function of position in the cell cycle and as a function of cell density. CHO fibroblasts that were synchronized at hourly intervals throughout the cell cycle by mitotic selection in an automated roller bottle apparatus secreted plasminogen activator only during the G2 and M phases of the cell cycle (10–14 h after mitotic selection). Cell-associated plasminogen activator activity was variable during G1 and S, but was greatly reduced during G2 and M. In contrast, secretion of the connective tissue matrix proteins, procollagen and fibronectin, was controlled by cell density rather than by cell cycle position. Type III procollagen and fibronectin were secreted throughout the cell cycle with no pronounced variations. Type I procollagen was not secreted by cycling cells and was observed in confluent cultures only after 24–48 h. To correlate these changes in protein secretion patterns with cell shape and contact, we used scanning electron microscopy (SEM) to study the appearance of CHO cells after mitotic selection. Actively dividing cells retained a high proportion of rounded, ruffled, and blebbed cells during all phases of the cell cycle. Only with increased cell density in contact-inhibited confluent cultures did most cells begin to flatten and spread. Thus, secretion of and attachment to extracellular matrix did not occur in rapidly dividing cells, but appeared to require the increased cell-cell contact and spreading that accompanies contact inhibition of growth. On the other hand, increased secretion of plasminogen activator was directly related to cell division and may be part of a sequence of events that allows cells growing in culture to loosen extracellular attachments in preparation for rounding and cytokinesis.  相似文献   

14.
Transient transfection of mammalian cells has proven to be a useful technique for the rapid production of recombinant proteins because of its ability to produce milligram quantities within 2 weeks following cloning of their corresponding cDNA. This rapid production also requires a fast and efficient purification scheme that can be applied generically, typically through the use of affinity tags such as the polyhistidine-tag for capture by immobilized metal-affinity chromatography (IMAC) or the Strep-tag II, which binds to the StrepTactin affinity ligand. However, one-step purification using either of these tags has disadvantages in terms of yield, elution conditions, and purity. Here, we show that the addition of both Strep-tag-II and (His)(8) to the C-terminal of r-proteins allows efficient purification by consecutive IMAC and StrepTactin affinity. This approach has been successfully demonstrated using the intracellular protein DsRed, as well as two secreted proteins, secreted alkaline phosphatase (SEAP) and vascular endothelial growth factor (VEGF), all produced by transient transfection of HEK293-EBNA1 cells in medium supplemented with bovine calf serum. All proteins were purified to >99% homogeneity with yields varying from 29 to 81%.  相似文献   

15.
In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain-intein tag for purification via a chitin-agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and β-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the ΔI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.  相似文献   

16.
Type VI secretion: a beginner's guide   总被引:5,自引:0,他引:5  
  相似文献   

17.
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a “sorting escort” (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as “sorting escorts” to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells. David V. Cohn—Deceased.  相似文献   

18.
The demand for recombinant proteins both for biopharmaceutical and technical applications is rapidly growing, and therefore the need to establish highly productive expression systems is steadily increasing. Yeasts, such as Pichia pastoris, are among the widely used production platforms with a strong emphasis on secreted proteins. Protein secretion is a limiting factor of productivity. There is strong evidence that secretion is coupled to specific growth rate (µ) in yeast, being higher at higher µ. For maximum productivity and product titer, high specific secretion rates at low µ would be desired. At high secretion rates cultures contain a large fraction of cells in the G2 and M phases of cell cycle. Consequently, the cell design target of a high fraction of cells in G2 + M phase was achieved by constitutive overexpression of the cyclin gene CLB2. Together with predictive process modeling this reverse engineered production strain improved the space time yield (STY) of an antibody Fab fragment by 18% and the product titer by 53%. This concept was verified with another secreted protein, human trypsinogen. Biotechnol. Bioeng. 2011;108: 2403–2412. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Recent genomic analyses of the two sequenced strains F. nucleatum subsp. nucleatum ATCC 25586 and F. nucleatum subsp. vincentii ATCC 49256 suggested that the major protein secretion systems were absent. However, such a paucity of protein secretion systems is incongruous with F. nucleatum pathogenesis. Moreover, the presence of one or more such systems has been described for every other Gram-negative organism sequenced to date. In this investigation, the question of protein secretion in F. nucleatum was revisited. In the current study, the absence in F. nucleatum of a twin-arginine translocation system (TC #2.A.64.), a Type III secretion system (TC #3.A.6.), a Type IV secretion system (TC #3.A.7.) and a chaperone/usher pathway (TC #1.B.11.) was confirmed. However, contrary to previous findings, our investigations indicated that a Type I protein secretion system was also absent from F. nucleatum. In contrast, members of the holin family (TC #1.E) and the machinery required for a Type 4 piliation/fimbriation system (TC #3.A.15.2.) were identified using a variety of bioinformatic tools. Furthermore, a complete range of proteins resembling members of the Type V secretion pathway, i.e., the Type Va (autotransporter; TC #1.B.12.), Type Vb (two-partner secretion system; TC #1.B.20.) and Type Vc (YadA-like trimeric autotransporter; TC #1.B.42.), was found. This work provides new insight into the protein secretion and virulence mechanisms of F. nucleatum.  相似文献   

20.
Genetic approaches have been used to facilitate purification of recombinant proteins, on both a large and a small scale. Based on developments in three different areas: (i) affinity chromatography; (ii) specific cleavage of fusion proteins and (iii) secretion of fusion proteins, a coupled expression/secretion system was designed. It was further improved by protein engineering. Using a synthetic DNA fragment, encoding two IgG-binding domains derived from staphylococcal protein A, gene products were secreted to the culture medium of Escherichia coli and purified with a one-step affinity procedure. The system has been used for large-scale production of biologically active human peptide hormones, to generate peptides for antibody production and to immobilize proteins on solid supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号