首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Isonicotinoylhydrazide Schiff's bases formed by the reaction of substituted and unsubstituted furyl-2-carboxaldehyde and thiophene-2-carboxaldehyde with isoniazid and, their Co (II), Cu (II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against Mycobacterium tuberculosis, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Bacillus cereus, Corynebacterium diphtheriae, Staphylococcus aureus and Streptococcus pyogenes bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata. The results of these studies show the metal complexes to be more antibacterial and antifungal against one or more bacterial/fungal strains as compared to the uncomplexed compounds. The brine shrimp bioassay indicated Schiff's bases, L3 and L6 and, their Cu (II) and Ni (II) metal complexes to be cytotoxic against Artemia salina, while all other compounds were inactive (LD50 > 1000).  相似文献   

2.
A series of fifteen new compounds related to pyrazinamide (PZA) were synthesized, characterized with analytical data and screened for antimycobacterial, antifungal and antibacterial activity. The series consists of 6-chloro-5-cyanopyrazine-2-carboxamide and N-substituted 6-amino-5-cyanopyrazine-2-carboxamides, derived from the previous by nucleophilic substitution with various non-aromatic amines (alkylamines, cycloalkylamines, heterocyclic amines). Some of the compounds exerted antimycobacterial activity against Mycobacterium tuberculosis equal to pyrazinamide (12.5-25 μg/mL). More importantly, 6-chloro-5-cyanopyrazine-2-carboxamide and 5-cyano-6-(heptylamino)pyrazine-2-carboxamide were active against Mycobacterium kansasii and Mycobacterium avium, which are unsusceptible to PZA. Basic structure-activity relationships are presented. Only weak antifungal and no antibacterial activity was detected.  相似文献   

3.
In an effort to develop new and more effective therapies to treat tuberculosis, a series of benzothiadiazine 1,1-dioxide derivatives were synthesized and their in vitro activity against Mycobacterium tuberculosis, Mycobacterium avium and Mycobacterium intracellulare was evaluated. One of the compounds, 8c, exhibited potent anti-tubercular activity, particularly for the resistant strains and thus prompted us to investigate its in vivo profile. However, the in vivo testing in a mouse model of tuberculosis infection did not show significant anti-tubercular activity, probably because of its poor bioavailability.  相似文献   

4.
A series of novel 3-cyclohexylpropanoic acid derivatives and 3-cyclohexylpropanoic acid-derived nitrogen heterocyclic compounds (1-8) have been synthesized and evaluated for tuberculostatic activity. Compounds 1a, 1c, 1e and 1f bearing benzimidazole or benzimidazole-like systems showed the most potent tuberculostatic activity against Mycobacterium tuberculosis strains with MIC values ranging from 1.5 to 12.5μg/mL. More importantly 1a (6-chloro-2-(2-cyclohexylethyl)-4-nitro-1H-benzo[d]imidazole) and 1f (2-(2-cyclohexylethyl)-1H-imidazo[4,5-b]phenazine) appeared selective for M. tuberculosis as compared with eukaryotic cells (human fibroblasts), and other antimicrobial strains. These compounds may thus represent a novel, selective class of antitubercular agents. Additionally compound 1a stimulated type I collagen output by fibroblasts, in vitro.  相似文献   

5.
As a part of our research to develop novel antitubercular and antimicrobial agents, a series of 3-(4-chlorophenyl)-4-substituted pyrazoles have been synthesised. These compounds were tested for antitubercular activity in vitro against Mycobacterium tuberculosis H37Rv strain using the BACTEC 460 radiometric system, antifungal activity against a pathogenic strain of fungi and antibacterial activity against gram-positive and gram-negative organisms. Among them tested, many compounds showed good to excellent antimicrobial and antitubercular activity. The results suggest that hydrazones, 2-azetidinones and 4-thiazolidinones bearing a core pyrazole scaffold would be potent antimicrobial and antitubercular agents.  相似文献   

6.
An efficient synthesis of novel antifungal 3a,9a-dihydro-1-ethoxycarbonyl-1-cyclopenteno[5,4-b]benzopyran-4-ones (10a-j) through 1,3-dipolar cycloaddition of all carbon 1,3-dipole (7) with substituted 3-formylchromones (8a-j) has been developed. The synthesized compounds were characterized spectroscopically and evaluated in vitro for antifungal activity against various strains. Some of the compounds 10b, 10d and 10i exhibit significant inhibitory potential against Aspergillus niger, Saccahromyces cerevisiae and Candida albicans.  相似文献   

7.
In this Letter, we report the structure–activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles derivatives 7(aj) and 8(aj) synthesized in good yields and characterized by 1H NMR, 13C NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coli and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.  相似文献   

8.
A series of hydrazone and 3-nitrovinyl analogs of indole-3-carboxaldehydes and related compounds were synthesized and screened for antitubercular activity against Mycobacterium tuberculosis H37R(V) in BACTEC 12B medium using the Microplate Alamar Blue Assay (MABA). Several compounds showed inhibitory activity against M. tuberculosis in primary screening assays at a concentration of 6.25 microg/mL; subsequent dose-response studies indicated that the most active compounds, 3d, 3e & 8b, had IC(50) values of 5.96, 5.4 & 1.6 microg/mL, respectively. These compounds represent potential leads for the further development of novel antitubercular agents.  相似文献   

9.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

10.
A series of 9-sulfonylated/sulfenylated-6-mercaptopurines has been prepared by reaction of 6-mercaptopurine with sulfonyl/sulfenyl halides. These compounds constitute a new class of potent antimycobacterial agents, possessing MIC values against Mycobacterium tuberculosis H37Rv in the range of 0.39-3.39 microg/mL, as well as appreciable activity against Mycobacterium avium. Furthermore, a compound of this small series exhibited good activity (MIC under 1 microg/mL) against several drug resistant strains of M. tuberculosis.  相似文献   

11.
The preparation of a series of novel chromone-fused cytosine analogues, i.e., chromeno[2,3-d]pyrimidines has been carried out from substituted 2-amino-4-oxo-4H-chromene-3-carbonitriles with urea, thiourea, and guanidine under different reaction conditions. These chromone-fused cytosine analogues were evaluated for their in vitro activity against Mycobacterium tuberculosis H37Rv strain and different microbial pathogenic strains in cell culture for their structure–activity relationships, respectively. Among the synthesized compounds, 2d, 3a, and 4e showed better results against Mycobacterium tuberculosis H37Rv. The compounds 2a, 2b, and 3a showed potential antibacterial activity against E. coli and P. aeruginosa, while the majority of compounds were found to be active against S. aureus as compared to ampicillin. The synthesized cytosine analogues having an imine (–C&dbnd;NH) have been less sensitive to the bacterial and fungal strains but have a more beneficial effect on Mycobacterium tuberculosis H37Rv.  相似文献   

12.
Choi KJ  Yu YG  Hahn HG  Choi JD  Yoon MY 《FEBS letters》2005,579(21):4903-4910
Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate- (ThDP-) and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids such as leucine, isoleucine, and valine. The genes of AHAS from Mycobacterium tuberculosis were cloned, and overexpressed in E. coli and purified to homogeneity. The purified AHAS from M. tuberculosis is effectively inhibited by pyrazosulfuron ethyl (PSE), an inhibitor of plant AHAS enzyme, with the IC(50) (inhibitory concentration 50%) of 0.87 microM. The kinetic parameters of M. tuberculosis AHAS were determined, and an enzyme activity assay system using 96-well microplate was designed. After screening of a chemical library composed of 5600 compounds using the assay system, a new class of AHAS inhibitor was identified with the IC(50) in the range of 1.8-2.6 microM. One of the identified compounds (KHG20612) further showed growth inhibition activity against various strains of M. tuberculosis. The correlation of the inhibitory activity of the identified compound against AHAS to the cell growth inhibition activity suggested that AHAS might be served as a target protein for the development of novel anti-tuberculosis therapeutics.  相似文献   

13.
A series of novel, highly antimicrobial salicylanilide esters of N-protected amino acids were synthesized and characterized. Their in vitro antimicrobial activity against eight fungal strains and Mycobacterium tuberculosis was determined. The compounds had the highest level of activity against Aspergillus fumigatus, Absidia corymbifera and Trichophyton mentagrophytes, and these levels were higher than that of the standard drug fluconazole. In addition, three compounds showed interesting antituberculosis activity, with inhibition ranging from 89% to 99%. (S)-4-Chloro-2-(4-trifluoromethylphenylcarbamoyl)-phenyl 2-benzyloxy-carbonylamino-propionate had the highest level of both antifungal and antimycobacterial activity. The structure–activity relationships of the new compounds are discussed.  相似文献   

14.
The emergence and spread of multidrug-resistant strains of Staphylococcus aureus and Mycobacterium tuberculosis are generating a threat to public health worldwide. In the current study, a series of N(1)-benzyl and N(1)-benzyloxy-1,6-dihydro-1,3,5-triazine-2,4-diamine derivatives were synthesized and investigated for their antimicrobial activity against S. aureus, and Mycobacterium smegmatis which is taxonomically related to M. tuberculosis. Most of the compounds exhibited good activity against M. smegmatis as determined by comparison of diameters of the zone of inhibition of test compounds and standard antibiotics. Compound 7o showed potent antimycobacterial activity against M. smegmatis without mammalian DHFR inhibition liability. The results from this study indicate that 1-benzyl derivatives of 1,6-dihydro-1,3,5-triazine-2,4-diamines may be used as lead compounds for the discovery of antimycobacterial agents.  相似文献   

15.
The synthesis of a new series of imidazo[1,2-a]pyrazine-2-carboxylic acid arylidene-hydrazides is described. The chemical structures of the compounds were elucidated by IR, (1)H-NMR, FAB(+)-MS spectral data. Their biological activity against various bacteria, fungi species, and Mycobacterium tuberculosis was investigated. Antibacterial activity was measured against Escherichia coli (NRRL B-3704), Staphylococcus aureus (NRRL B-767), Salmonella typhimurium (NRRL B-4420), Proteus vulgaris (NRLL B-123), Enterococcus faecalis (isolated obtained from Faculty of Medicine Osmangazi University, Eskisehir, Turkey), Pseudomonas aeruginosa (NRRL B-23 27853), Klebsiella spp. (isolated obtained from Faculty of Medicine Osmangazi University, Eskisehir, Turkey), while antifungal activity was evaluated against Candida albicans (isolates obtained from Osmangazi Uni. Fac.of Medicine), Candida glabrata (isolates obtained from Osmangazi Uni. Fac.of Medicine). Compounds were also evaluated for antituberculosis activity against Mycobacterium tuberculosis H(37)Rv using the BACTEC 460 radiometric system and BACTEC 12B medium. The compounds showed moderate inhibitor effects against human pathogenic microorganisms., whereas the preliminary results indicated that all of the tested compounds were inactive against Mycobacterium tuberculosis H(37)Rv.  相似文献   

16.
This work describes the synthesis of a series of fatty acid hydrazide derivatives of isoniazid (INH). The compounds were tested against Mycobacterium tuberculosis H37Rv (ATCC 27294) as well as INH-resistant (ATCC 35822 and 1896 HF) and rifampicin-resistant (ATCC 35338) M. tuberculosis strains. The fatty acid derivatives of INH showed high antimycobacterial potency against the studied strains, which is desirable for a pharmaceutical compound, suggesting that the increased lipophilicity of isoniazid plays an important role in its antimycobacterial activity.  相似文献   

17.
A series of 2,6-disubstituted and 2,5,6-trisubstituted imidazo[2,1-b][1,3,4]thiadiazoles were synthesized, the structures of the compounds were elucidated and screened for antitubercular activity against Mycobacterium tuberculosis H37Rv using the BACTEC 460 radiometric system, antibacterial activity against Escherichia coli and Bacillus cirrhosis, and antifungal activity against Aspergillus niger and Penicillium wortmanni. Among the tested compounds 2-(2-furyl)-6-phenylimidazo[2,1-b][1,3,4] thiadiazole-5-carbaldehyde (6c) and (2-cyclohexyl-6-phenylimidazo[2,1-b][1,3,4]thiadiazol-5-yl)methanol (7a) have shown the highest (100%) inhibitory activity. Compounds 6a, 6b, 7c, and 8a exhibited moderate antitubercular activity with percentage inhibition 36, 30, 15, and 20, respectively, at a MIC of >6.25 microg/ml.  相似文献   

18.
Various 5-(fluoroaryl)-4-(hetero)aryl substituted pyrimidines have been synthesized based on the Suzuki cross-coupling and nucleophilic aromatic substitution of hydrogen (SNH) reactions starting from commercially available 5-bromopyrimidine and their antitubercular activity against Mycobacterium tuberculosis H37Rv has been explored. The outcome of the study disclose that, some of the compounds have showed promising activity in micromolar concentration against Mycobacterium tuberculosis H37Rv, Mycobacterium avium, Mycobacterium terrae, and multidrug-resistant strains isolated from tuberculosis patients in Ural region (Russia). The data concerning the ‘structure–activity’ relationship for fluorinated compounds have been discussed.  相似文献   

19.
Khare G  Kar R  Tyagi AK 《PloS one》2011,6(7):e22441
Tuberculosis (TB) continues to pose a serious challenge to human health afflicting a large number of people throughout the world. In spite of the availability of drugs for the treatment of TB, the non-compliance to 6-9 months long chemotherapeutic regimens often results in the emergence of multidrug resistant strains of Mycobacterium tuberculosis adding to the precariousness of the situation. This has necessitated the development of more effective drugs. Thiamin biosynthesis, an important metabolic pathway of M. tuberculosis, is shown to be essential for the intracellular growth of this pathogen and hence, it is believed that inhibition of this pathway would severely affect the growth of M. tuberculosis. In this study, a comparative homology model of M. tuberculosis thiamin phosphate synthase (MtTPS) was generated and employed for virtual screening of NCI diversity set II to select potential inhibitors. The best 39 compounds based on the docking results were evaluated for their potential to inhibit the MtTPS activity. Seven compounds inhibited MtTPS activity with IC(50) values ranging from 20-100 μg/ml and two of these exhibited weak inhibition of M. tuberculosis growth with MIC(99) values being 125 μg/ml and 162.5 μg/ml while one compound was identified as a very potent inhibitor of M. tuberculosis growth with an MIC(99) value of 6 μg/ml. This study establishes MtTPS as a novel drug target against M. tuberculosis leading to the identification of new lead molecules for the development of antitubercular drugs. Further optimization of these lead compounds could result in more potent therapeutic molecules against Tuberculosis.  相似文献   

20.
The galactopyranosyl amino alcohols (3-16) were synthesised by regioselective oxirane ring opening of compound 2 with variety of amines and screened for antitubercular and antifungal activities. One of the compounds (16) showed potent activity against Mycobacterium tuberculosis H37 Rv in vitro and also displayed activity in MDR TB. The compound (16) was found to be superior to ethambutol clinically used anti TB drug in in vitro screen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号