首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2-Oxoglutarate (2OG) dependent dioxygenases are ubiquitous iron containing enzymes that couple substrate oxidation to the conversion of 2OG to succinate and carbon dioxide. They participate in a wide range of biological processes including collagen biosynthesis, fatty acid metabolism, hypoxic sensing and demethylation of nucleic acids and histones. Although substantial progress has been made in elucidating their function, the role of many 2OG dioxygenases remains enigmatic. Here we have studied the 2OG and iron (Fe(II)) dependent dioxygenase Ofd2 in Schizosaccharomyces pombe, a member of the AlkB subfamily of dioxygenases. We show that decarboxylation of 2OG by recombinant Ofd2 is dependent on Fe(II) and a histidine residue predicted to be involved in Fe(II) coordination. The decarboxylase activity of Ofd2 is stimulated by histones, and H2A has the strongest effect. Ofd2 interacts with all four core histones, however, only very weakly with H4. Our results define a new subclass of AlkB proteins interacting with histones, which also might comprise some of the human AlkB homologs with unknown function.  相似文献   

2.
The Escherichia coli AlkB protein and human homologs hABH2 and hABH3 are 2-oxoglutarate (2OG)/Fe(II)-dependent DNA/RNA demethylases that repair 1-methyladenine and 3-methylcytosine residues. Surprisingly, hABH1, which displays the strongest homology to AlkB, failed to show repair activity in two independent studies. Here, we show that hABH1 is a mitochondrial protein, as demonstrated using fluorescent fusion protein expression, immunocytochemistry, and Western blot analysis. A fraction is apparently nuclear and this fraction increases strongly if the fluorescent tag is placed at the N-terminal end of the protein, thus interfering with mitochondrial targeting. Molecular modeling of hABH1 based upon the sequence and known structures of AlkB and hABH3 suggested an active site almost identical to these enzymes. hABH1 decarboxylates 2OG in the absence of a prime substrate, and the activity is stimulated by methylated nucleotides. Employing three different methods we demonstrate that hABH1 demethylates 3-methylcytosine in single-stranded DNA and RNA in vitro. Site-specific mutagenesis confirmed that the putative Fe(II) and 2OG binding residues are essential for activity. In conclusion, hABH1 is a functional mitochondrial AlkB homolog that repairs 3-methylcytosine in single-stranded DNA and RNA.  相似文献   

3.
AlkB is one of four proteins involved in the adaptive response to DNA alkylation damage in Escherichia coli and is highly conserved from bacteria to humans. Recent analyses have verified the prediction that AlkB is a member of the Fe(II) and 2-oxoglutarate (2OG)-dependent oxygenase family of enzymes. AlkB mediates repair of methylated DNA by direct demethylation of 1-methyladenine and 3-methylcytosine lesions. Other members of the Fe(II) and 2OG-dependent oxygenase family, including those involved in the hypoxic response, are targets for therapeutic intervention. Assays measuring 2OG turnover were used to investigate the selectivity of AlkB. 1-Methyladenosine, 1-methyl-2'-deoxyadenosine, 3-methylcytidine, and 3-methyl-2'-deoxycytidine all stimulated 2OG turnover by AlkB but were not demethylated indicating an uncoupling of 2OG and prime substrate oxidation and that oligomeric DNA is required for hydroxylation and subsequent demethylation. In contrast the equivalent unmethylated nucleosides did not stimulate 2OG turnover indicating that the presence of a methyl group in the substrate is important in initiating oxidation of 2OG. Stimulation of 2OG turnover by 1-methyladenosine was highly dependent on the presence of a reducing agent, ascorbate or dithiothreitol. Following the observation that AlkB is inhibited by high concentrations of 2OG, analogues of 2OG, including 2-mercaptoglutarate, were found to specifically inhibit AlkB. The flavonoid quercetin inhibits both AlkB and the 2OG oxygenase factor-inhibiting hypoxia-inducible factor (FIH) in vitro. FIH inhibition by quercetin occurs in the presence of excess iron indicating a specific interaction, while the inhibition of AlkB by quercetin is, predominantly, due to nonspecific iron chelation.  相似文献   

4.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

5.
The Fe(II)/2OG (2-oxoglutarate)-dependent dioxygenase superfamily comprises proteins that couple substrate oxidation to decarboxylation of 2OG to succinate. A member of this class of mononuclear non-haem Fe proteins is the Escherichia coli DNA/RNA repair enzyme AlkB. In the present work, we describe the magnetic and optical properties of the yet uncharacterized human ALKBH4 (AlkB homologue). Through EPR and UV-visible spectroscopy studies, we address the Fe-binding environment of the proposed catalytic centre of wild-type ALKBH4 and an Fe(II)-binding mutant. We could observe a novel unusual Fe(III) high-spin EPR-active species in the presence of sulfide with a g(max) of 8.2. The Fe(II) site was probed with NO. An intact histidine-carboxylate site is necessary for productive Fe binding. We also report the presence of a unique cysteine-rich motif conserved in the N-terminus of ALKBH4 orthologues, and investigate its possible Fe-binding ability. Furthermore, we show that recombinant ALKBH4 mediates decarboxylation of 2OG in absence of primary substrate. This activity is dependent on Fe as well as on residues predicted to be involved in Fe(II) co-ordination. The present results demonstrate that ALKBH4 represents an active Fe(II)/2OG-dependent decarboxylase and suggest that the cysteine cluster is involved in processes other than Fe co-ordination.  相似文献   

6.
The Escherichia coli endonuclease III (Nth-Eco) protein is involved in the removal of damaged pyrimidine residues from DNA by base excision repair. It is an iron-sulphur enzyme possessing both DNA glycosylase and apurinic/apyrimidinic lyase activities. A database homology search identified an open reading frame in genomic sequences of Schizosaccharomyces pombe which encodes a protein highly similar to Nth-Eco. The gene has been subcloned in an expression vector and the protein purified to apparent homogeneity. The S.pombe Nth homologue (Nth-Spo) is a 40.2 kDa protein of 355 amino acids. Nth-Spo possesses glycosylase activity on different types of DNA substrates with pyrimidine damage, being able to release both urea and thymine glycol from double-stranded polymers. The eukaryotic protein removes urea more efficiently than the prokaryotic enzyme, whereas its efficiency in excising thymine glycol is lower. A nicking assay was used to show that the enzyme also exhibits an AP lyase activity on UV- and gamma-irradiated DNA substrates. These findings show that Nth protein is structurally and functionally conserved from bacteria to fission yeast.  相似文献   

7.
Bacterial AlkB and three human AlkB homologues (ABH1, ABH2, and ABH3) are Fe2+/2-oxoglutarate-dependent oxygenases that directly repair alkylation-damaged DNA. Here, we show that ABH1 unexpectedly has a second activity, cleaving DNA at abasic (AP) sites such as those arising spontaneously from alkylation-dependent depurination reactions. The DNA cleavage activity of ABH1 does not require added Fe2+ or 2-oxoglutarate, is not inhibited by EDTA, and is unaffected by mutation of the putative metal-binding residues, indicating that this activity arises from an active site distinct from that used for demethylation. AP-specific DNA cleavage was shown to occur by a lyase mechanism, rather than by hydrolysis, with the enzyme remaining associated with the DNA product. ABH1 can cleave at closely spaced AP-sites on opposite DNA strands yielding double-strand breaks in vitro and this reaction may relate to the physiological role of this unexpected AP lyase activity.  相似文献   

8.
Jilani A  Ramotar D 《Biochemistry》2002,41(24):7688-7694
Cells that depend on oxygen for survival constantly produce reactive oxygen species that attack DNA to produce a variety of lesions, including single-strand breaks with 3'-blocking groups such as 3'-phosphate and 3'-phosphoglycolate. These 3'-blocking ends prevent the activity of DNA polymerase and are generally removed by DNA repair proteins with 3'-diesterase activity. We report here the purification and partial characterization of a 45 kDa protein from Schizosaccharomyces pombe total extract based on the ability of this protein to process bleomycin- or H(2)O(2)-damaged DNA in vitro to allow DNA repair synthesis by DNA polymerase I. Further analysis revealed that the 45 kDa protein removes 3'-phosphate ends created by the Escherichia coli fpg AP lyase following the incision of AP site but is unable to process the 3'-alpha,beta unsaturated aldehyde generated by E. coli endonuclease III. The protein cannot cleave DNA bearing AP sites, suggesting that it is not an AP endonuclease or AP lyase. We conclude that the 45 kDa protein purified from S. pombe is a DNA 3'-phosphatase.  相似文献   

9.
The Escherichia coli AlkB protein, and two human homologs ABH2 and ABH3, directly demethylate 1-methyladenine and 3-methylcytosine in DNA. They couple Fe(II)-dependent oxidative demethylation of these damaged bases to decarboxylation of alpha-ketoglutarate. Here, we have determined the kinetic parameters for AlkB oxidation of 1-methyladenine in poly(dA), short oligodeoxyribonucleotides, nucleotides, and nucleoside triphosphates. Methylated poly(dA) was the preferred AlkB substrate of those tested. The oligonucleotide trimer d(Tp1meApT) and even 5'-phosphorylated 1-me-dAMP were relatively efficiently demethylated, and competed with methylated poly(dA) for AlkB activity. A polynucleotide structure was clearly not essential for AlkB to repair 1-methyladenine effectively, but a nucleotide 5' phosphate group was required. Consequently, 1-me-dAMP(5') was identified as the minimal effective AlkB substrate. The nucleoside triphosphate, 1-me-dATP, was inefficiently but actively demethylated by AlkB; a reaction with 1-me-ATP was even slower. E. coli DNA polymerase I Klenow fragment could employ 1-me-dATP as a precursor for DNA synthesis in vitro, suggesting that demethylation of alkylated deoxynucleoside triphosphates by AlkB could have biological significance. Although the human enzymes, ABH2 and ABH3, demethylated 1-methyladenine residues in poly(dA), they were inefficient with shorter substrates. Thus, ABH3 had very low activity on the trimer, d(Tp1meApT), whereas no activity was detected with ABH2. AlkB is known to repair methyl and ethyl adducts in DNA; to extend this substrate range, AlkB was shown to reduce the toxic effects of DNA damaging agents that generate hydroxyethyl, propyl, and hydroxypropyl adducts.  相似文献   

10.
Human and Escherichia coli derivatives of AlkB enzymes remove methyl groups from 1-methyladenine and 3-methylcytosine in nucleic acids via an oxidative mechanism that releases the methyl group as formaldehyde. In this report, we demonstrate that the mouse homologues of the alpha-ketoglutarate Fe(II) oxygen-dependent enzymes mAbh2 and Abh3 have activities comparable to those of their human counterparts. The mAbh2 and mAbh3 release modified bases from both DNA and RNA. Comparison of the activities of the homogenous ABH2 and ABH3 enzymes demonstrate that these activities are shared by both sets of enzymes. An assay for the detection of alpha-ketoglutarate Fe(II) dioxygenase activity using an oligodeoxyribonucleotide with a unique modification shows activity for all four enzymes studied and a loss of activity for eight mutant proteins. Steady-state kinetics for removal of methyl groups from DNA substrates indicates that the reactions of the proteins are close to the diffusion limit. Moreover, mAbh2 or mAbh3 activity increases survival in a strain defective in alkB. The mRNAs of AHB2 and ABH3 are expressed most in testis for ABH2 and ABH3, whereas expression of the homologous mouse genes is different. The mAbh3 is strongly expressed in testis, whereas highest expression of mAbh2 is in heart. Other purified human AlkB homologue proteins ABH4, ABH6, and ABH7 do not manifest activity. The demonstration of mAbh2 and mAbh3 activities and their distributions provide data on these mammalian homologues of AlkB that can be used in animal studies.  相似文献   

11.
12.
Escherichia coli AlkB is a DNA/RNA repair enzyme containing a mononuclear Fe(II) site that couples the oxidative decomposition of alpha-ketoglutarate (alphaKG) to the hydroxylation of 1-methyladenine or 3-methylcytosine lesions in DNA or RNA, resulting in release of formaldehyde and restoration of the normal bases. In the presence of Fe(II), alphaKG, and oxygen, but the absence of methylated DNA, AlkB was found to catalyze an aberrant reaction that generates a blue chromophore. The color is proposed to derive from Fe(III) coordinated by a hydroxytryptophan at position 178 as revealed by mass spectrometric analysis. Protein structural modeling confirms that Trp 178 is reasonably positioned to react with the Fe(IV)-oxo intermediate proposed to form at the active site.  相似文献   

13.
14.
Methylating agents are ubiquitous in the environment, and central in cancer therapy. The 1-methyladenine and 3-methylcytosine lesions in DNA/RNA contribute to the cytotoxicity of such agents. These lesions are directly reversed by ABH3 (hABH3) in humans and AlkB in Escherichia coli. Here, we report the structure of the hABH3 catalytic core in complex with iron and 2-oxoglutarate (2OG) at 1.5 A resolution and analyse key site-directed mutants. The hABH3 structure reveals the beta-strand jelly-roll fold that coordinates a catalytically active iron centre by a conserved His1-X-Asp/Glu-X(n)-His2 motif. This experimentally establishes hABH3 as a structural member of the Fe(II)/2OG-dependent dioxygenase superfamily, which couples substrate oxidation to conversion of 2OG into succinate and CO2. A positively charged DNA/RNA binding groove indicates a distinct nucleic acid binding conformation different from that predicted in the AlkB structure with three nucleotides. These results uncover previously unassigned key catalytic residues, identify a flexible hairpin involved in nucleotide flipping and ss/ds-DNA discrimination, and reveal self-hydroxylation of an active site leucine that may protect against uncoupled generation of dangerous oxygen radicals.  相似文献   

15.
Williams SD  David SS 《Biochemistry》2000,39(33):10098-10109
The E. coli adenine glycosylase MutY is a member of the base excision repair (BER) superfamily of DNA repair enzymes. MutY plays an important role in preventing mutations caused by 7, 8-dihydro-8-oxo-2'-deoxyguanosine (OG) by removing adenine from OG:A base pairs. Some enzymes of the BER superfamily catalyze a strand scission even concomitant with base removal. These bifunctional glycosylase/AP lyases bear a conserved lysine group in the active site region, which is believed to be the species performing the initial nucleophilic attack at C1' in the catalysis of base removal. Monofunctional glycosylases such as MutY are thought to perform this C1' nucleophilic displacement by a base-activated water molecule, and, indeed, the conservation of amine functionality positioning has not been observed in protein sequence alignments. Bifunctional glycosylase/AP lyase activity was successfully engineered into MutY by replacing serine 120 with lysine. MutY S120K is capable of catalyzing DNA strand scission at a rate equivalent to that of adenine excision for both G:A and OG:A mispair substrates. The extent of DNA backbone cleavage is independent of treating reaction aliquots with 0.1 M NaOH. Importantly, the replacement of the serine with lysine results in a catalytic rate that is compromised by at least 20-fold. The reduced efficiency in the glycosylase activity is also reflected in a reduced ability of S120K MutY to prevent DNA mutations in vivo. These results illustrate that the mechanisms of action of the two classes of these enzymes are quite similar, such that a single amino acid change is sufficient, in the case of MutY, to convert a monofunctional glycosylase to a bifunctional glycosylase/AP lyase.  相似文献   

16.
17.
Recombinational repair was first detected in budding yeast Saccharomyces cerevisiae and was also studied in fission yeast Schizosaccharomyces pombe over the recent decade. The discovery of Sch. pombe homologs of the S. cerevisiae RAD52 genes made it possible not only to identify and to clone their vertebrate counterparts, but also to study in detail the role of DNA recombination in certain cell processes. For instance, recombinational repair was shown to play a greater role in maintaining genome integrity in fission yeast and in vertebrates compared with S. cerevisiae. The present state of the problem of recombinational double-strand break repair in fission yeast is considered with a focus on comparisons between Sch. pombe and higher eukaryotes. The role of double-strand break repair in maintaining genome stability is discussed.  相似文献   

18.
Etheno-DNA adducts are mutagenic and lead to genomic instability. Enzymes belonging to Fe(II)/2-oxoglutarate-dependent dioxygenase family repair etheno-DNA adducts by directly removing alkyl chain as glyoxal. Presently there is no simple method to assess repair reaction of etheno-adducts. We have developed a rapid and sensitive assay for studying etheno-DNA adduct repair by Fe(II)/2-oxoglutarate-dependent dioxygenases. Using AlkB as model Fe(II)/2-oxoglutarate-dependent dioxygenases, we performed in vitro repair of etheno-adducts containing DNA and detected glyoxal by reacting with 2-hydrazinobenzothiazole which forms complex yellow color compound with distinct absorption spectrum with a peak absorption at 365 nm. We refer this method as 2-hydrazinobenzothiazole-based etheno-adduct repair protocol or HERP. Our novel approach for determining repair of etheno-adducts containing DNA overcomes several drawbacks of currently available radioisotope-based assay.  相似文献   

19.

Background

ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a direct, single-protein repair system, protecting cellular DNA and RNA against the cytotoxic and mutagenic activity of alkylating agents, chemicals significantly contributing to tumor formation and used in cancer therapy. In silico analysis and in vivo studies have shown the existence of AlkB homologs in almost all organisms. Nine AlkB homologs (ALKBH1–8 and FTO) have been identified in humans. High ALKBH levels have been found to encourage tumor development, questioning the use of alkylating agents in chemotherapy. The aim of this work was to assign biological significance to multiple AlkB homologs by characterizing their activity in the repair of nucleic acids in prokaryotes and their subcellular localization in eukaryotes.

Methodology and Findings

Bioinformatic analysis of protein sequence databases identified 1943 AlkB sequences with eight new AlkB subfamilies. Since Cyanobacteria and Arabidopsis thaliana contain multiple AlkB homologs, they were selected as model organisms for in vivo research. Using E. coli alkB mutant and plasmids expressing cyanobacterial AlkBs, we studied the repair of methyl methanesulfonate (MMS) and chloroacetaldehyde (CAA) induced lesions in ssDNA, ssRNA, and genomic DNA. On the basis of GFP fusions, we investigated the subcellular localization of ALKBHs in A. thaliana and established its mostly nucleo-cytoplasmic distribution. Some of the ALKBH proteins were found to change their localization upon MMS treatment.

Conclusions

Our in vivo studies showed highly specific activity of cyanobacterial AlkB proteins towards lesions and nucleic acid type. Subcellular localization and translocation of ALKBHs in A. thaliana indicates a possible role for these proteins in the repair of alkyl lesions. We hypothesize that the multiplicity of ALKBHs is due to their involvement in the metabolism of nucleo-protein complexes; we find their repair by ALKBH proteins to be economical and effective alternative to degradation and de novo synthesis.  相似文献   

20.
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to determine whether or not AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We previously reported that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by a model DNA alkylating agent methyl methanesulfonate (MMS) and that this sensitivity can be reduced by deleting the MAG1 3-methyladenine DNA glycosylase gene. Here we report that in the absence of the AP endonucleases, deletion of two Escherichia coli endonuclease III homologs, NTG1 and NTG2, partially suppresses MMS-induced killing, which indicates that the AP lyase products are deleterious unless they are further processed by an AP endonuclease. The severe MMS sensitivity seen in AP endonuclease deficient strains can also be rescued by treatment of cells with the AP lyase inhibitor methoxyamine, which suggests that the product of AP lyase action on an AP site is indeed an extremely toxic lesion. In addition to the AP endonuclease interactions, deletion of NTG1 and NTG2 enhances the mag1 mutant sensitivity to MMS, whereas overexpression of MAG1 in either the ntg1 or ntg2 mutant severely affects cell growth. These results help to delineate alkylation base lesion flow within the BER pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号