首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from 15N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are α-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. 15N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.  相似文献   

2.
We studied amidated and non-amidated piscidins 1 and 3, amphipathic cationic antimicrobial peptides from fish, to characterize functional and structural similarities and differences between these peptides and better understand the structural motifs involved in biological activity and functional diversity among amidated and non-amidated isoforms. Antimicrobial and hemolytic assays were carried out to assess their potency and toxicity, respectively. Site-specific high-resolution solid-state NMR orientational restraints were obtained from (15)N-labeled amidated and non-amidated piscidins 1 and 3 in the presence of hydrated oriented lipid bilayers. Solid-state NMR and circular dichroism results indicate that the peptides are alpha-helical and oriented parallel to the membrane surface. This orientation was expected since peptide-lipid interactions are enhanced at the water-bilayer interface for amphipathic cationic antimicrobial peptides. (15)N solid-state NMR performed on oriented samples demonstrate that piscidin experiences fast, large amplitude backbone motions around an axis parallel to the bilayer normal. Under the conditions tested here, piscidin 1 was confirmed to be more antimicrobially potent than piscidin 3 and antimicrobial activity was not affected by amidation. In light of functional and structural similarities between piscidins 1 and 3, we propose that their topology and fast dynamics are related to their mechanism of action.  相似文献   

3.
Bechinger B 《FEBS letters》2001,504(3):161-165
Helical peptides reconstituted into oriented phospholipid bilayers were studied by proton-decoupled 15N solid-state NMR spectroscopy. Whereas hydrophobic channel peptides, such as the N-terminal region of Vpu of HIV-1, adopt transmembrane orientations, amphipathic peptide antibiotics are oriented parallel to the bilayer surface. The interaction contributions that determine the alignment of helical peptides in lipid membranes were analysed using model sequences, and peptides that change their topology in a pH-dependent manner have been designed. The energy contributions of histidines, lysines, leucines and alanines as well as the alignment of peptides and phospholipids under conditions of hydrophobic mismatch have been investigated in considerable detail.  相似文献   

4.
Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein-lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides.  相似文献   

5.
The 2H solid-state NMR spectra of deuterated fatty acyl chains provide direct access to the order of the hydrophobic membrane interior. From the deuterium order parameter profiles of perdeuterated fatty acyl chains the membrane hydrophobic thickness can be calculated. Here we show data obtained from POPC, POPE and mixed POPE/POPG bilayers, representative of bacterial membranes, in the presence of cholesterol or ergosterol and antimicrobial peptaibols. Whereas sterols have a strong ordering effect also on these membranes, the peptides exhibit neutral or disordering effects. By comparing with data from the literature it becomes obvious that cationic amphipathic peptides that probably reside within the interface of phospholipid membranes tend to strongly disorder the packing of the fatty acyl chains, an effect that has been correlated to antimicrobial and DNA transfection activities. In contrast transmembrane sequences or hydrophobic peptides that probably partition deeply into the membrane tend to have only modest disordering activities. The 2H solid-state NMR approach has also been used to monitor the lateral separation of domains rich in anionic phospholipids in the presence of cationic peptides and has thereby provided important insights into their mechanisms of action.  相似文献   

6.
Polypeptides have been prepared by solid-phase peptide synthesis and labelled with 15N at single sites to be used for static or magic angle spinning solid-state NMR spectroscopy. After reconstitution into oriented membranes, the alignment of polypeptide alpha-helices with respect to the bilayer surface is accessible by proton-decoupled 15N solid-state NMR spectroscopy. In addition, limiting values of rotational diffusion coefficients are obtained. The effects of membrane inserted peptides on the bilayer phospholipids have been investigated by 2H and 31P solid-state NMR spectroscopy. Long hydrophobic peptides such as the channel-forming domains of Vpu of HIV-1 or M2 of influenza A adopt stable alignments approximately parallel to the bilayer normal in agreement with models suggesting transmembrane helical bundle formation. The 15N chemical shift data agree with tilt angles of approximately 20 degrees and 33 degrees, respectively. In contrast, multi-charged amphipathic alpha-helices adopt stable orientations parallel to the bilayer surface. In the presence of these peptides, decreased order parameters of the fatty acyl chains, membrane thinning, and the loss of long-range order are observed. Peptides that change topology in a pH dependent manner are more potent in antibiotic assays under experimental conditions where they show in-plane alignments. This result suggests that their detergent-like properties, rather than the formation of transmembrane helical bundles, are responsible for their cell-killing activities. Topological equilibria are also observed within proteins or for polypeptides that do not match the hydrophobic thickness of the bilayer.  相似文献   

7.
The amphipathic antimicrobial peptide piscidin 1 was studied in magnetically aligned phospholipid bilayers by oriented-sample solid-state NMR spectroscopy. 31P NMR and double-resonance 1H/15N NMR experiments performed between 25°C and 61°C enabled the lipid headgroups as well as the peptide amide sites to be monitored over a range of temperatures. The α-helical peptide dramatically affects the phase behavior and structure of anionic bilayers but not those of zwitterionic bilayers. Piscidin 1 stabilizes anionic bilayers, which remain well aligned up to 61°C when piscidin 1 is on the membrane surface. Two-dimensional separated-local-field experiments show that the tilt angle of the peptide is 80 ± 5°, in agreement with previous results on mechanically aligned bilayers. The peptide undergoes fast rotational diffusion about the bilayer normal under these conditions, and these studies demonstrate that magnetically aligned bilayers are well suited for structural studies of amphipathic peptides.  相似文献   

8.
The secondary structure and membrane-associated conformation of a synthetic peptide corresponding to the putative membrane-binding C-terminal 38 residues of the bovine milk component PP3 was determined using 1H NMR in methanol, CD in methanol and SDS micelles, and 15N solid-state NMR in planar phospholipid bilayers. The solution NMR and CD spectra reveal that the PP3 peptide in methanol and SDS predominantly adopts an alpha-helical conformation extending over its entire length with a potential bend around residue 19. 15N solid-state NMR of two PP3 peptides 15N-labelled at the Gly7 and Ala32 positions, respectively, and dissolved in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol phospholipid bilayers shows that the peptide is associated to the membrane surface with the amphipathic helix axis oriented parallel to the bilayer surface.  相似文献   

9.
The cationic amphipathic designer peptide LAH4 exhibits potent antimicrobial, nucleic acid transfection and cell penetration activities. Closely related derivatives have been developed to enhance viral transduction for gene therapeutic assays. LAH4 contains four histidines and, consequently, its overall charge and membrane topology in lipid bilayers are strongly pH dependent. In order to better understand the differential interactions of this amphipathic peptide with negatively-charged membranes its interactions, topologies, and penetration depth were investigated in the presence of lipid bilayers as a function of pH, buffer, phospholipid head group, and fatty acyl chain composition using a combination of oriented synchrotron radiation circular dichroism spectroscopy as well as oriented and non-oriented solid-state NMR spectroscopy. This combination of methods indicates that in the presence of lipids with phosphatidylglycerol head groups, the topological equilibria of LAH4 is shifted towards more in-plane configurations even at neutral pH. In contrast, a transmembrane alignment is promoted when LAH4 interacts with membranes made of dimyristoyl phospholipids rather than palmitoyl-oleoyl-phospholipids. Finally, the addition of citrate buffer favours LAH4 transmembrane alignments, even at low pH, probably by complex formation with the cationic charges of the peptide. In summary, this study has revealed that the membrane topology of this peptide is readily modulated by the environmental conditions.  相似文献   

10.
We studied the interaction between synthetic amphipathic peptides and model membranes by solid-state NMR and infrared spectroscopies. Peptides with 14 and 21 amino acids composed of leucines and phenylalanines modified by the addition of crown ethers were synthesized. The 14-mer and 21-mer peptides both possess a helical amphipathic structure. To shed light on their membrane interaction, (31)P and (2)H solid-state NMR experiments were performed on both peptides in interaction with dimyristoylphosphatidylcholine vesicles in the absence and presence of cholesterol, dimyristoylphosphatidylglycerol vesicles, and oriented bicelles. (31)P NMR experiments on multilamellar vesicles reveal that the dynamics and/or orientation of the polar headgroups are weakly yet markedly affected by the presence of the peptides, whereas (31)P NMR experiments on bicelles indicate no significant changes in the morphology and orientation of the bicelles. On the other hand, (2)H NMR experiments on vesicles reveal that the acyl chain order is affected differently depending on the membrane lipidic composition and on the peptide hydrophobic length. Finally, infrared spectroscopy was used to study the interfacial region of the bilayer. Based on these studies, mechanisms of membrane perturbation are proposed for the 14-mer and 21-mer peptides in interaction with model membranes depending on the bilayer composition and peptide length.  相似文献   

11.
The effects of phospholipid or detergent chain length on the structure and translational diffusion coefficient of the membrane-targeting peptide corresponding to the N-terminal amphipathic sequence of Escherichia coli enzyme IIA(Glc) were investigated by nuclear magnetic resonance (NMR) spectroscopy. Three anionic phospholipids (dihexanoyl phosphatidylglycerol, dioctanoyl phosphatidylglycerol, and didecanoyl phosphatidylglycerol) and four lipid-mimicking anionic detergents (sodium hexanesulfonate, 2,2-dimethyl-silapentane-5-sulfonate, sodium nonanesulfonate, and sodium dodecylsulfate) were evaluated. In all cases, the cationic peptide adopts an amphipathic helical structure. While the chain length of the two-chain phospholipids has a negligible effect on the peptide conformation, the effect of chain length of those single-chain detergents on the helix length is more pronounced. The diffusion coefficients of the peptide/micelle complexes were found to correlate with the chain lengths of both the lipid and the detergent groups. Taken together, short-chain anionic phospholipids are proposed to be useful membrane-mimetic models for the structural elucidation of membrane-binding peptides such as cationic antimicrobial peptides. DSS does not form micelles by itself according to the diffusion coefficient data, but it does associate with this cationic peptide. Consequently, both DSS and its analog may be chosen as NMR chemical shift reference compounds depending on the nature of the biomolecules under investigation.  相似文献   

12.
(31)P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in (31)P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid (31)P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type (31)P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

13.
Uniaxially aligned phospholipid bilayers are often used as model membranes to obtain structural details of membrane-associated molecules, such as peptides, proteins, drugs, and cholesterol. Well-aligned bilayer samples can be difficult to prepare and no universal procedure has been reported that orients all combinations of membrane-embedded components. In this study, a new method for producing mechanically aligned phospholipid bilayer samples using naphthalene, a sublimable solid, was developed. Using (31)P-NMR spectroscopy, comparison of a conventional method of preparing mechanically aligned samples with the new naphthalene procedure found that the use of naphthalene significantly enhanced the alignment of 3:1 1-palmitoyl-2-oleoyl-phosphatidylethanolamine to 1-palmitoyl-2-oleoyl-phosphatidylglycerol. The utility of the naphthalene procedure is also demonstrated on bilayers of many different compositions, including bilayers containing peptides such as pardaxin and gramicidin. These results show that the naphthalene procedure is a generally applicable method for producing mechanically aligned samples for use in NMR spectroscopy. The increase in bilayer alignment implies that this procedure will improve the sensitivity of solid-state NMR experiments, in particular those techniques that detect low-sensitivity nuclei, such as 15N and 13C.  相似文献   

14.
The high-resolution three-dimensional structure of an antimicrobial peptide has implications for the mechanism of its antimicrobial activity, as the conformation of the peptide provides insights into the intermolecular interactions that govern the binding to its biological target. For many cationic antimicrobial peptides the negatively charged membranes surrounding the bacterial cell appear to be a main target. In contrast to what has been found for other classes of antimicrobial peptides, solution NMR studies have revealed that in spite of the wide diversity in the amino acid sequences of amphibian antimicrobial peptides (AAMPs), they all adopt amphipathic α-helical structures in the presence of membrane-mimetic micelles, bicelles or organic solvent mixtures. In some cases the amphipathic AAMP structures are directly membrane-perturbing (e.g. magainin, aurein and the rana-box peptides), in other instances the peptide spontaneously passes through the membrane and acts on intracellular targets (e.g. buforin). Armed with a high-resolution structure, it is possible to relate the peptide structure to other relevant biophysical and biological data to elucidate a mechanism of action. While many linear AAMPs have significant antimicrobial activity of their own, mixtures of peptides sometimes have vastly improved antibiotic effects. Thus, synergy among antimicrobial peptides is an avenue of research that has recently attracted considerable attention. While synergistic relationships between AAMPs are well described, it is becoming increasingly evident that analyzing the intermolecular interactions between these peptides will be essential for understanding the increased antimicrobial effect. NMR structure determination of hybrid peptides composed of known antimicrobial peptides can shed light on these intricate synergistic relationships. In this work, we present the first NMR solution structure of a hybrid peptide composed of magainin 2 and PGLa bound to SDS and DPC micelles. The hybrid peptide adopts a largely helical conformation and some information regarding the inter-helix organization of this molecule is reported. The solution structure of the micelle associated MG2-PGLa hybrid peptide highlights the importance of examining structural contributions to the synergistic relationships but it also demonstrates the limitations in the resolution of the currently used solution NMR techniques for probing such interactions. Future studies of antimicrobial peptide synergy will likely require stable isotope-labeling strategies, similar to those used in NMR studies of proteins.  相似文献   

15.
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.  相似文献   

16.
The interaction of many lytic cationic antimicrobial peptides with their target cells involves electrostatic interactions, hydrophobic effects, and the formation of amphipathic secondary structures, such as alpha helices or beta sheets. We have shown in previous studies that incorporating approximately 30%d-amino acids into a short alpha helical lytic peptide composed of leucine and lysine preserved the antimicrobial activity of the parent peptide, while the hemolytic activity was abolished. However, the mechanisms underlying the unique structural features induced by incorporating d-amino acids that enable short diastereomeric antimicrobial peptides to preserve membrane binding and lytic capabilities remain unknown. In this study, we analyze in detail the structures of a model amphipathic alpha helical cytolytic peptide KLLLKWLL KLLK-NH2 and its diastereomeric analog and their interactions with zwitterionic and negatively charged membranes. Calculations based on high-resolution NMR experiments in dodecylphosphocholine (DPCho) and sodium dodecyl sulfate (SDS) micelles yield three-dimensional structures of both peptides. Structural analysis reveals that the peptides have an amphipathic organization within both membranes. Specifically, the alpha helical structure of the L-type peptide causes orientation of the hydrophobic and polar amino acids onto separate surfaces, allowing interactions with both the hydrophobic core of the membrane and the polar head group region. Significantly, despite the absence of helical structures, the diastereomer peptide analog exhibits similar segregation between the polar and hydrophobic surfaces. Further insight into the membrane-binding properties of the peptides and their depth of penetration into the lipid bilayer has been obtained through tryptophan quenching experiments using brominated phospholipids and the recently developed lipid/polydiacetylene (PDA) colorimetric assay. The combined NMR, FTIR, fluorescence, and colorimetric studies shed light on the importance of segregation between the positive charges and the hydrophobic moieties on opposite surfaces within the peptides for facilitating membrane binding and disruption, compared to the formation of alpha helical or beta sheet structures.  相似文献   

17.
31P solid-state NMR spectroscopy has been used to investigate the macroscopic phase behavior of phospholipid bilayers in the presence of increasing amounts of magainin antibiotic peptides. Addition of >1 mol% magainin 2 to gel-phase DMPC or liquid crystalline POPC membranes respectively, results in 31P NMR spectra that are characterized by the coexistence of isotropic signals and line shapes typical for phospholipid bilayers. The isotropic signal intensity is a function of temperature and peptide concentration. At peptide concentrations >4 mol% of the resulting phospholipid 31P NMR spectra are characteristic of magnetically oriented POPC bilayers suggesting the formation of small disk-like micelles or perforated sheets. In contrast, addition of magainin to acidic phospholipids results in homogenous bilayer-type 31P NMR spectra with reduced chemical shift anisotropies. The results presented are in good agreement with the interfacial insertion of magainin helices with an alignment parallel to the surface of the phospholipid bilayers. The resulting curvature strain results in detergent-like properties of the amphipathic helical peptides.  相似文献   

18.
Knowledge of the structure, dynamics and interactions of polypeptides when associated with phospholipid bilayers is key to understanding the functional mechanisms of channels, antibiotics, signal- or translocation peptides. Solid-state NMR spectroscopy on samples uniaxially aligned relative to the magnetic field direction offers means to determine the alignment of polypeptide bonds and domains relative to the bilayer normal. Using this approach the 15N chemical shift of amide bonds provides a direct indicator of the approximate helical tilt, whereas the 2H solid-state NMR spectra acquired from peptides labelled with 3,3,3-2H3-alanines contain valuable complimentary information for a more accurate analysis of tilt and rotation pitch angles. The deuterium NMR line shapes are highly sensitive to small variations in the alignment of the Cα–Cβ bond relative to the magnetic field direction and, therefore, also the orientational distribution of helices relative to the membrane normal. When the oriented membrane samples are investigated with their normal perpendicular to the magnetic field direction, the rate of rotational diffusion can be determined in a semi-quantitative manner and thereby the aggregation state of the peptides can be analysed. Here the deuterium NMR approach is first introduced showing results from model amphipathic helices. Thereafter investigations of the viral channel peptides Vpu1–27 and Influenza A M222–46 are shown. Whereas the 15N chemical shift data confirm the transmembrane helix alignments of these hydrophobic sequences, the deuterium spectra indicate considerable mosaic spread in the helix orientations. At least two peptide populations with differing rotational correlation times are apparent in the deuterium spectra of the viral channels suggesting an equilibrium between monomeric peptides and oligomeric channel configurations under conditions where solid-state NMR structural studies of these peptides have previously been performed. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

19.
The orientation and dynamics of an 18-residue antimicrobial peptide, ovispirin, has been investigated using solid-state NMR spectroscopy. Ovispirin is a cathelicidin-like model peptide (NH(2)-KNLRRIIRKIIHIIKKYG-COOH) with potent, broad-spectrum bactericidal activity. (15)N NMR spectra of oriented ovispirin reconstituted into synthetic phospholipids show that the helical peptide is predominantly oriented in the plane of the lipid bilayer, except for a small portion of the helix, possibly at the C-terminus, which deviates from the surface orientation. This suggests differential insertion of the peptide backbone into the lipid bilayer. (15)N spectra of both oriented and unoriented peptides show a reduced (15)N chemical shift anisotropy at room temperature compared with that of rigid proteins, indicating that the peptide undergoes uniaxial rotational diffusion around the bilayer normal with correlation times shorter than 10(-4) s. This motion is frozen below the gel-to-liquid crystalline transition temperature of the lipids. Ovispirin interacts strongly with the lipid bilayer, as manifested by the significantly reduced (2)H quadrupolar splittings of perdeuterated palmitoyloleoylphosphatidylcholine acyl chains upon peptide binding. Therefore, ovispirin is a curved helix residing in the membrane-water interface that executes rapid uniaxial rotation. These structural and dynamic features are important for understanding the antimicrobial function of this peptide.  相似文献   

20.
Aisenbrey C  Bechinger B 《Biochemistry》2004,43(32):10502-10512
Knowledge of the alignment of alpha-helical polypeptides with respect to the membrane surface and their dynamics in the membrane are key to understanding the functional mechanisms of channels, antibiotics, and signal or translocation peptides. In this paper polypeptides have been labeled with [3,3,3-(2)H(3)]alanine as well as with (15)N at single site amide positions and reconstituted into oriented phospholipid bilayers. A transmembrane and two amphipathic helical polypeptides with the deuterium label at orthogonal positions have been investigated by deuterium and proton-decoupled (15)N solid-state NMR spectroscopy. The (15)N chemical shift measurements and the deuterium quadrupole splitting exhibit a highly complementary functional dependence with respect to the spatial alignment of the polypeptide. Therefore, the combination of these two measurements allows one to determine both the tilt and the rotational pitch angle with high precision. In addition, the deuterium line shape is very sensitive to mosaic spread and the relative orientation of the peptide. The solid-state NMR measurements indicate that the model sequences exhibit a small degree of mosaicity, when at the same time the phospholipid headgroup region is significantly distorted. Furthermore, the (2)H solid-state NMR spectra reveal small orientational and dynamic differences when the fatty acyl chain composition of the phosphatidylcholine bilayers is modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号