首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We investigated the rheological properties of living human airway smooth muscle cells in culture and monitored the changes in rheological properties induced by exogenous stimuli. We oscillated small magnetic microbeads bound specifically to integrin receptors and computed the storage modulus (G') and loss modulus (G") from the applied torque and the resulting rotational motion of the beads as determined from their remanent magnetic field. Under baseline conditions, G' increased weakly with frequency, whereas G" was independent of the frequency. The cell was predominantly elastic, with the ratio of G" to G' (defined as eta) being approximately 0. 35 at all frequencies. G' and G" increased together after contractile activation and decreased together after deactivation, whereas eta remained unaltered in each case. Thus elastic and dissipative stresses were coupled during changes in contractile activation. G' and G" decreased with disruption of the actin fibers by cytochalasin D, but eta increased. These results imply that the mechanisms for frictional energy loss and elastic energy storage in the living cell are coupled and reside within the cytoskeleton.  相似文献   

2.
3.
We investigated the mechanical and electrophysiological responses of human and porcine bronchial arterial smooth muscle to isoprostanes (metabolites of membrane lipid peroxidation). These evoked a constrictor response which was sensitive to blockade of thromboxane receptors, as well as to a non-specific tyrosine kinase inhibitor and an inhibitor of Rho-kinase. The patch clamp technique was used to characterize the K+ and Ca2+ currents in these tissues, and to show that isoprostanes caused a brief enhancement of K+ currents followed by prolonged and marked suppression of the same.  相似文献   

4.
The majority of in vitro studies on airway smooth muscle have used the trachealis (TSM) as a convenient substitute for muscle from airways that constitute the flow-limiting segment. The latter are technically difficult to work with. However, because the site of maximum resistance to airflow is at the third to seventh generations of the bronchial tree, the trachealis preparation is of limited value. Length-tension and force-velocity properties were therefore studied at optimal length (lo) of canine bronchial smooth muscle (BSM) from which cartilage had been carefully removed. Normalized maximum isometric tension or stress (Po x 10(4) N/m2) for BSM was 7.1 +/- 0.19 (SE), which was similar to that of BSM with cartilage (BSM+C, 6.8 +/- 0.21) but lower than for TSM (18.2 +/- 0.81). At length greater than lo, the BSM+C was stiffer than the BSM. The values of maximum shortening capacity (delta Lmax), obtained directly from isotonic shortening at a load equal to the resting tension at lo, were 0.76 lo +/- 0.03, 0.41 lo +/- 0.02, and 0.24 +/- 0.02 lo for TSM, BSM, and BSM+C, respectively. The BSM and BSM+C delta Lmaxs were different (P less than 0.05). Maximal shortening velocities (Vo) for BSM, elicited at 2, 4, and 8 s by quick release in the course of an isometric contraction were significantly higher than for the BSM+C. Vos showed gradual decreases in all three groups in the later phase of contraction, suggesting the operation of latch bridges.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
Smooth muscle has the unique ability to adapt easily and quickly to length changes without compromising its ability to generate force. This ability is referred to as mechanical plasticity and is now considered to be an important aspect of smooth muscle that affects both its contractile and relaxation behaviour. It is therefore important to incorporate knowledge of plasticity into further studies of smooth muscle behaviour. It is also important that future studies be focused on deciphering the mechanism of smooth muscle length adaptation and plasticity. This review outlines some of the proposed mechanisms determining plasticity. However, it should be said that there are other proposed mechanisms not touched upon here, which may be equally as important. This review also focuses on the relevance of smooth muscle plasticity in asthma, but it is important to remember that there are other places where smooth muscle plasticity may play an equally important role.  相似文献   

7.
The aims of this work were (1) to determine the dose-response relationship between ex vivo exposure to oxidizing pollutants such as nitrogen dioxide (NO2), the aldehyde acrolein, and ozone (O3), and the reactivity to agonists in isolated human bronchial smooth muscle; and (2) to investigate the alterations in the cellular mechanisms of human airway smooth muscle contraction induced by such exposures. Experiments were performed in isolated human bronchi obtained at thoracotomy. Isometric contraction in response to a variety of agonists was compared between pollutant-exposed preparations and paired controls. Short exposures to NO2, acrolein, or O3 altered the subsequent airway smooth muscle responsiveness in a dose-dependent manner. The cellular mechanisms producing the airway hyperresponsiveness observed in vitro are shared by the three pollutants and include alterations in airway smooth muscle excitation-contraction coupling as well as indirect effects on neutral endopeptidase activity.Abbreviations ACh acetylcholine - CCRC cumulative concentration-response curve - KH Krebs-Henseleit solution - NEP neutral endopeptidase - NKA neurokinin A - SP substance P  相似文献   

8.
9.
10.
Control of human airway smooth muscle: in vitro studies   总被引:9,自引:0,他引:9  
  相似文献   

11.
12.
Lung compliance is generally considered to represent a blend of surface and tissue forces, and changes in compliance in vivo are commonly used to indicate changes in surface forces. There are, however, theoretical arguments that would allow contraction of airway smooth muscle to affect substantially the elasticity of the lung. In the present study we evaluated the role of conducting airway contraction on lung compliance in vivo by infusing methacholine (MCh) at a constant rate into the bronchial circulation. With a steady-state MCh infusion of 2.4 micrograms/min into the bronchial perfusate (perfusate concentration = 0.7 microM), there was an approximate doubling of lung resistance and a 50% fall in dynamic compliance. There were also significant decreases in chord compliance measured from the quasi-static pressure-volume curves and in total lung capacity and residual volume. When the same infusion rate was administered into the pulmonary artery, no changes in lung mechanics were observed. These results indicate that the conducting airways may have a major role in regulating lung elasticity. This linkage between airway contraction and lung compliance may account for the common observation that pharmacological challenges given to the lung usually result in similar changes in lung compliance and airway conductance. Our results also suggest the possibility that the lung tissue resistance, which dominates the measurement of lung resistance in many species, might in fact reflect the physical properties of conducting airways.  相似文献   

13.
Intracellular recordings were made from human oviduct smooth muscle maintained in cell culture. Solitary cells isolated from one another and cells in contact with one another retained electrical properties of smooth muscle in vivo. Membrane potential of solitary cells and connected cells was -35 mV. Connected cells formed electrotonic junctions which transmitted current from one cell to another. This current spread was responsible for differences in input resistance and time constant in solitary cells, 66 Momega and 96 msec, compared to connected cells, 26 Momega and 56 msec. All cells expressed delayed rectification to depolarizing current pulses. Some cells generated action potentials spontaneously or in response to intracellular current pulses. Action potentials were abolished by cobalt or by EGTA. Slow wave potentials, 5 . 20 mV in amplitude, occurred continuously once every 15 to 45 seconds in connected cells.  相似文献   

14.
Respiratory epithelium inhibits bronchial smooth muscle tone   总被引:10,自引:0,他引:10  
The aim of the present study was to determine whether or not the respiratory epithelium can modulate the responsiveness of bronchial smooth muscle. Paired rings of canine bronchi (4-6 mm OD), in some of which the epithelium had been removed mechanically (by rubbing the luminal surface), were mounted in physiological saline solution, gassed with 95% O2-5% CO2, and maintained at 37 degrees C. The presence or absence of the epithelium was confirmed by histological examination. Removal of the epithelium increased the contractile responses evoked by acetylcholine, histamine, and 5-hydroxytryptamine. Transmural nerve stimulation evoked similar peak responses in the presence and absence of epithelium. In unrubbed preparations, the peak response was followed by a gradual decrease when the stimulation was continued. This decrease, which persisted in the presence of propranolol, was not observed in epithelium-denuded preparations. In bronchial rings contracted with acetylcholine, isoproterenol produced concentration-dependent relaxations which were significantly greater in rings with epithelium compared with denuded rings. These results suggest that respiratory epithelial cells may generate an inhibitory signal to decrease the responsiveness of bronchial smooth muscle to contractile agonists and augment the effectiveness of inhibitory stimuli.  相似文献   

15.
Although airway and pulmonary vessel tone are regulated predominantly by cholinergic and adrenergic impulses, biologically active peptides such as calcitonin gene-related peptide (CGRP) may significantly influence human smooth muscle tone in normal and pathophysiological states. In the present study, the expression of CGRP and its receptor CGRPR-1 and the biological effect of the peptide were investigated in human airways and pulmonary arteries. Immunohistochemistry revealed the presence of CGRP in human airway nerves and neuro-epithelial cells, whereas the receptor was found in epithelial cells and smooth muscle myocytes of the bronchi and in pulmonary artery endothelium. On precontracted bronchi (3-4 mm in diameter) alpha-CGRP (0.01-10 nM) caused a concentration-dependent contraction on epithelium-denuded bronchi, whereas no significant effect was recorded in bronchi with intact epithelium. In pulmonary arteries (2-6 mm in diameter), alpha-CGRP caused a concentration-dependent relaxation of endothelium intact and denuded vessels. Pre-treatment with indomethacin, but not with l-NAME, prevented the relaxation induced by alpha-CGRP in pulmonary arteries suggesting that prostaglandins but not nitric oxide (NO) are involved in the intracellular signal transduction pathway. The effects induced by alpha-CGRP in bronchi and vessels were prevented by application of the antagonist CGRP((8-37)). In summary, the present studies examined the biological function of CGRP in human airways and demonstrated a constrictory effect of CGRP only in epithelium-denuded airway smooth muscle indicating an alteration of CGRP airway effects in respiratory tract pathological states with damaged epithelium such as chronic obstructive pulmonary disease or bronchial asthma.  相似文献   

16.
Load-strain characteristics of tendinous tissues (Achilles tendon and aponeurosis) were determined in vivo for human medial gastrocnemius (MG) muscle. Seven male subjects exerted isometric plantar flexion torque while the elongation of tendinous tissues of MG was determined from the tendinous movements by using ultrasonography. The maximal strain of the Achilles tendon and aponeurosis, estimated separately from the elongation data, was 5.1 +/- 1.1 and 5.9 +/- 1.6%, respectively. There was no significant difference in strain between the Achilles tendon and aponeurosis. In addition, no significant difference in strain was observed between the proximal and distal regions of the aponeurosis. The results indicate that tendinous tissues of the MG are homogeneously stretched along their lengths by muscle contraction, which has functional implications for the operation of the human MG muscle-tendon unit in vivo.  相似文献   

17.
18.
Whether contractility of bronchial smooth muscle cells (BSMC) from asthmatic subjects is significantly altered has never been validated. We tested the hypothesis that such BSMC show increased contractility. Cells were isolated from endobronchial biopsies. BSMC shortening was measured under an inverted microscope. Statistically significant increases in maximum shortening capacity (Delta L max) and velocity (Vo) were found in asthmatic BSMC compared with normal cells. Mean Delta L max in asthmatic BSMC was 39.05 +/- 1.99% (SE) of resting cell length compared with 28.6 +/- 1.1% in normal cells; mean Vo was 7.2 +/- 0.8% of resting cell length/s in asthmatic cells and 5.23 +/- 0.46% in normal cells. To investigate the mechanism of the increased contractility, we measured mRNA abundance of smooth muscle types of myosin light chain kinase (smMLCK) and myosin heavy chain. RT-PCR data revealed that smMLCK mRNA was higher in asthmatic BSMC (0.106 +/- 0.021 arbitrary densitometric units, n = 7) than in control cells (0.04 +/- 0.008, n = 11; P < 0.05). Messages for myosin heavy chain isoforms showed no difference. Increased kinase message content is an index of the mechanism for the increased velocity and capacity of shortening we report.  相似文献   

19.
Vagal innervation of guinea pig bronchial smooth muscle   总被引:2,自引:0,他引:2  
We isolated the guinea pig right bronchus with the vagus nerves intact and evaluated the changes in isometric tension of the smooth muscle in response to nerve stimulation. Brief (10-s) trains of electrical field stimulation or vagus nerve stimulation caused a biphasic contraction: the "first phase" sensitive to atropine and the "second phase" sensitive to capsaicin. The two phases could be dissociated by adjusting the stimulus intensity; greater stimulus intensities (pulse durations or voltage) were required to evoke the capsaicin-sensitive phase. When stimulated at 30-min intervals, the magnitude of both phases of the contractions declined over a 2-h period of repeated stimulation; however, this was prevented by indomethacin. Stimulation of the left vagus nerve resulted in a monophasic contraction of the right bronchus, with little evidence of a capsaicin-sensitive phase. Blocking neurotransmission through the bronchial ganglion, as monitored by intracellular recording techniques, abolished the first-phase contraction but had no effect on the capsaicin-sensitive phase. Selective blockade of muscarinic M1 receptors had no effect on vagus nerve-mediated contractions. The results demonstrate that the left and right vagus nerves carry preganglionic fibers to the right bronchial ganglion. The right but not the left vagus nerve also carries capsaicin-sensitive afferent fibers that, when stimulated, result in a persistent contraction of the right bronchus. Finally, we provide functional and electrophysiological evidence supporting the hypothesis that capsaicin-sensitive afferent neurons communicate with postganglionic motoneurons within the bronchus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号