首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Plant science》1986,47(1):45-55
Soybean [Glycine max (L.) Merr.] calli derived from susceptible and resistant soybean genotypes were exposed to the culture filtrates of pathogenic and non-pathogenic isolates of Phialophora gregata (Allington and Chamberlain) W. Gams. The rate of browning, growth and viability (measured by 2,3,5-triphenyltetrazolium chloride reduction) of the callus were determined after various exposure times to the fungus culture filtrates. Callus from susceptible Century, Cumberland, Corsoy 79, Harosoy and Clark 63 were sensitive to the culture filtrates of pathogenic isolates of P. gregata. Callus from Plant Introductions 437833 and 84946-2, when treated with fungal culture filtrates, did not develop browning and callus growth and cell viability were not decreased compared to untreated controls. Culture filtrates from non-pathogenic isolates of the fungus did not affect the growth of susceptible and resistant callus. Tobacco (Nicotiana tabacum L.) callus was not sensitive to the culture filtrate of a P. gregata isolate pathogenic to soybean. The fungal culture filtrate, based on limited evaluation, appears to be selective towards soybean callus. Based on this initial work, it appears that soybean callus bioassays have utility for evaluating soybean for resistance to P. gregata as well as assessing pathogenicity of fungus isolates.  相似文献   

2.
Growth and anatomical responses of plants during latent and pathogenic infection by fungal pathogens are not well understood. The interactions between soybean (Glycine max) and two types of the pathogen Phialophora gregata were investigated to determine how plants respond during latent and pathogenic infection. Stems of soybean cultivars with different or no genes for resistance to infection by P. gregata were inoculated with wildtype or GFP and RFP-labeled strains of types A or B of P. gregata. Plants were sectioned during latent and pathogenic infection, examined with transmitted light or fluorescent microscopy, and quantitative differences in vessels and qualitative differences in infection were assessed using captured images. During latent infection, the number of vessels was similar in resistant and susceptible plants infected with type A or B compared to the control, and fungal infection was rarely observed in vessels. During pathogenic infection, the resistant cultivars had 20 to 25% more vessels than the uninfected plants, and fungal hyphae were readily observed in the vessels. Furthermore, during the pathogenic phase in a resistant cultivar, P.gregata type A-GFP was limited to outside of the primary xylem, while P.gregata type B-RFP was observed in the primary xylem. The opposite occurred with the susceptible cultivar, where PgA-GFP was observed in the primary xylem and PgB-RFP was limited to the interfascicular region. In summary, soybean cultivars with resistance to BSR produced more vessels and can restrict or exclude P. gregata from the vascular system compared to susceptible cultivars. Structural resistance mechanisms potentially compensate for loss of vessel function and disrupted water movement.  相似文献   

3.
Root rot disease tolerant clones of turmeric variety Suguna of Curcuma longa L. were isolated using continuous in vitro selection technique against pure culture filtrate of Pythium graminicolum. Large amount of profuse, compact, creamish white callus was obtained from in vivo vegetative bud when cultured on LSBM fortified with 2,4-D (3 mg l−1) after 45 days of culture. Callus was challenged with pure culture filtrate of P. graminicolum to isolate viable callus within 30 days of culture, which was further subjected to pure culture filtrate treatment. After three cycles of treatment, four cell lines which are tolerant to culture filtrate was isolated through continuous in vitro selection and subcultured on regeneration medium LSBM fortified with BAP (4 mg l−1) along with the control non-selected callus to obtain complete plantlets through discontinuous in vitro selection technique. Plants regenerated from tolerant and non-selected calli were screened for disease tolerance by adopting in vitro sick plot technique. The data obtained from this experiment revealed a ratio of 225:49 tolerant: susceptible in vitro clones retrieved from tolerant callus. However, plants regenerated from the CL1a1 and non-selected calli were susceptible under in vitro sick plot technique. The root rot disease tolerant clones were hardened and established in soil with 90% survival frequency.  相似文献   

4.
To investigate the effects of brown stem rot, a vascular disease of soybean (Glycine max) induced by Phialophora gregata, on the water relations of diseased plants, stems of greenhouse-grown plants of susceptible (Pride B216) and resistant (BSR 201) cultivars were injected with the pathogen at vegetative growth stage VI. Plants of both cultivars developed internal stem browning, but those of Pride B216 developed more severe symptoms of water stress (reduced leaf water potential and stem conductance). Inoculated plants of both cultivars also had reduced stem conductance and increased stomatal conductance and transpiration. Disease-related water stress can be attributed to the combined effects of reduced stem conductance and increased water loss resulting from increased stomatal conductance.  相似文献   

5.
The activity and longevity of Soybean mosaic virus (SMV) in soybean callus culture were investigated with 11 SMV strains which are distinguished by differential reactions on soybean cultivars [Glycine max (L.) Merr.]. Dual cultures (soybean callus and SMV) were initiated by direct culture of SMV-infected leaves from susceptible soybean plants on Msoy and MS agar medium. Established SMV-callus cultures were maintained at 25 °C under light, subcultured to fresh MS medium at 2-month intervals or as necessary, and assayed periodically for virus infectivity. The infected calluses on MS medium grew better and stayed active longer than those on Msoy medium. At 10–15 °C, calluses and SMV were viable and active for 13–15 weeks or longer without subculture. The infectivity of SMV from callus cultures was comparable with that of SMV from infected plants, and remained stable for more than a year through five successive subcultures. Callus tissues of dual cultures were uniformly infected by SMV, thus ensuring infectious subcultures by random transfers. Production of in vitro inoculum can be significantly increased by multiple subcultures. Biological integrity of the SMV cultures was maintained with no change of viral virulence and pathotype. The method is of value for preserving a collection of SMV strains in a highly infectious and readily available form and reduces the chance of contamination or loss in viability.  相似文献   

6.
Wheat anther culture: effect of genotype and environmental conditions   总被引:2,自引:0,他引:2  
Twenty-two cultivars and lines of winter and spring wheat (Triticum aestivum L.) were studied, most for the first time, for their anther culture response. The response was genotype dependent. Plants grown in the field gave higher callus induction frequency than those grown in the greenhouse and the controlled environment chamber. Donor plants grown in a season of low drought stress as compared to a season of severe drought stress resulted in a higher frequency of callus induction. Spherical microcalli were observed in two wheat genotypes in some of only those anthers that were placed with only one loculus in contact with the medium. Wheat lines that were more responsive to anther culture were identified.  相似文献   

7.
Response of twenty eight cultivars of durum wheat (Triticum turgidum var. durum) to immature embryo culture, callus production and in vitro salt tolerance was evaluated. For assessment of cultivars to salt tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1% w/v) added to the culture medium during two subsequent subcultures (4 weeks each). Comparison of cultivars for callus induction from immature embryo was based on callus induction frequency and fresh weight growth of callus (FWG). While, for salt tolerance, the relative fresh weight growth (RFWG) and necrosis percent of callus were used. There were significant differences among cultivars for potential of regeneration from immature embryo, and ‘Shahivandi’ a native durum wheat cultivar originating from western Iran was superior among the cultivars tested. The FWG distinguished cultivars more than callus induction frequency did for callus induction evaluation. Hence, a range of FWG from 1.23 to 14.65 g was observed in ‘Mexical-75’ and ‘Omrabi-5’ cultivars, respectively. Growing calli derived from cultivars ‘PI 40100’ and ‘Dipper-6’ showed superiority for tolerating salinity under in vitro conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Tissue culture may generate useful genetic variation for quantitative traits. The objective of this study was to analyze genetic variation for ten quantitative traits of soybean [Glycine max (L.) Merr.] among lines derived from the tissue culture of three cultivars. The three cultivars used to obtain R0 plants from tissue culture were BSR 101, Hodgson 78, and Jilin 3. A total of 63 R0-derived lines of BSR 101, eight of Hodgson 78, and 42 of Jilin 3 was planted with the untreated controls in row plots in a randomized complete-block design with three replications at two locations for each of 2 years. The traits evaluated were days to beginning bloom (R1), beginning seed (R5), beginning maturity (R7), full maturity (R8), height, lodging, seed yield, seed weight, protein content, and oil content. Significant (P < 0.05) variation was observed among lines for each of the ten quantitative traits. There was 57.1% of the BSR 101 lines, 87.5% of the Hodgson 78 lines, and 76.2% of the Jilin 3 lines that were significantly different from the controls for at least one trait. The percentages of lines that were significantly different from the control for an individual trait ranged from 2.7% for oil content to 25.7% for R7. The magnitude of the changes was relatively small. Although this genetic variation may be useful for cultivar development, greater variability at less expense would be expected with conventional artificial hybridization.Journal Paper No. J-14958 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IOWA, USA Project No. 2475.  相似文献   

9.
Intergeneric Fragaria vesca x Potentilla fruticosa hybrids were produced using in vitro culture. Hybrid plants were not obtained by direct embryo rescue, but were regenerated from cotyledon-derived callus. Experiments with F. vesca indicated that using cotyledon halves was not more productive than using entire cotyledons. A polarity was observed in cotyledons and in cotyledon halves, with callus and regenerated shoots produced more frequently from proximal ends. Cotyledons from 17% of hybrid embryos produced callus and regenerated mature plants. The technique enabled rapid multiplication of some embryos, with the production of more than one hybrid plant. In some cases more than 100 shoots were obtained from one embryo, demonstrating the potential usefulness of this technique for the production of intergeneric hybrids.Abbreviations BA 6-benzylaminopurine - IAA indole-3-acetic acid - NAA -naphthaleneacetic acid  相似文献   

10.
Summary Dogwood anthracnose, caused by the fungus Discula destructiva Redlin, is a severe disease of flowering dogwood (Cornus florida L.) and Pacific dogwood (C. nuttallii Aud.). Disease control is inadequate in nurseries and landscapes and absent in the forest, and resistant cultivars are not commercially available. The ability to select tissues insensitive to culture filtrates from D. destructiva in vitro offers a novel and important approach for the selection of dogwood genotypes that are resistant to or tolerant of this devastating fungus. Embryo-derived dogwood callus cultures were established on Murashige and Skoog medium amended with benzyladenine (BA) and either 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA). Selection for insensitivity to D. destructiva metabolites was done by placement of individual cultures on media amended with progressively higher concentrations of a partially purified culture filtrate (PPCF) containing lowmolecular-weight compounds. Following this selection process, cultures were challenged in a dose-response format with PPCF to determine whether the sensitivity of the callus to the culture filtrate had changed. During the selection period, the fresh weight of callus grown on medium containing 2,4-D and amended with PPCF was always less than that of callus grown on medium amended with the same concentration of potato-dextrose broth (PDB, negative control). Fresh weight of callus was greater on medium containing NAA amended with PPCF than on medium with the same concentration of PDB. Callus selected in the presence of NAA showed decreased sensitivity to toxic metabolites at higher concentrations of culture filtrate. The in vitro system described may assist in the identification of disease-resistant germplasm important to the long-term survival of flowering dogwood.  相似文献   

11.
Hypocotyl, cotyledon and zygotic embryo explants from two Tunisian Cucumis melo L. cultivars Beji and Maazoun, cultured on the MS medium added with 2,4-D (0.25–1 mg l−1) and BA (0.10–0.50 mg l−1), produce calluses with somatic embryos after 3 weeks of culture. For Beji c.v. the highest percentage (62.50%) of embryogenesis was observed for cotyledons. The average embryo number per callus was 10.40. Embryogenesis induction for zygotic embryos reached 33.50% with 29 embryos per callus. The embryogenesis ability of hypocotyls did not exceed 12.50% (2.50 embryos per callus). Somatic embryogenesis for Maazoun c.v. explants was less efficient. Embryos formation was observed only for cotyledons (29%) and zygotic embryos (25%). Cotyledonary staged embryos, when transferred to hormone free MS medium, germinated. The maximum germination rates were 51.50 and 44.50%, respectively for Maazoun and Beji c.v. The highest percentage (36.50%) of survival plants was noted for Beji c.v. Regenerants were diploids (2n = 2x = 24) and morphologically similar to their parents issued from seeds.  相似文献   

12.
Soybean, Glycine max (L.) Merrill (Fabaceae), is an introduced crop to America and initially benefited from a small number of pests threatening its production. Since its rapid expansion in production beginning in the 1930s, several pests have been introduced from the native range of soybean. Our knowledge of how these pests interact and the implications for management is limited. We examined how three common economic soybean pests, the nematode Heterodera glycines Ichinohe (Nematoda: Heteroderidae), the fungus Cadophora gregata Harrington & McNew (Incertae sedis), and the aphid Aphis glycines Matsumura (Hemiptera: Aphididae), interact on soybean cyst nematode‐susceptible (SCN‐S) and soybean cyst nematode‐resistant cultivars carrying the PI 88788 resistance source (SCN‐R). From 2008 to 2010, six soybean cultivars were infested with either a single pest or all three pests in combination in a micro‐plot field experiment. Pest performance was measured in a ‘single pest’ treatment and compared with pest performance in the ‘multiple pest’ treatment, allowing us to measure the impact of SCN resistance and the presence of other soybean pests on each pest’s performance. Performance of H. glycines (80% reduction in reproduction) and A. glycines (19.8% reduction in plant exposure) was reduced on SCN‐R cultivars. Regardless of cultivar, the presence of multiple pests significantly decreased the performance of A. glycines, but significantly increased H. glycines performance. The presence of multiple pests decreased the performance of C. gregata on SCN‐S soybean cultivars (20.6% reduction in disease rating).  相似文献   

13.
Protoplasts isolated from cotyledons of a number of cultivars of Brassica napus, B. campestris and B. oleracea were cultured in different media to study the characteristics of cell wall regeneration and cell division at early stages of culture. Time course analysis using Calcolfluor White staining indicated that cell wall regeneration began in some protoplasts 2–4 h following isolation in all cultivars. 30–70% of cultured cotyledon protoplasts exhibited cell wall regeneration at 24 h and about 60–90% at 72 h after the initiation of culture. Results also indicated that a low percentage (0.4–5.4%) of cultured cotyledon protoplasts entered their first cell division one day after initial culture in all twelve cultivars. The percentage of dividing cells increased linearly up to 40% from 1 to 7 day, indicating that cotyledon protoplasts of Brassica had a high capacity for cell division. Factors that influence the level of cell wall regeneration and cell division during cotyledon protoplast culture have been investigated in this study. Cotyledons from seedlings germinated in a dark/dim light regime provided a satisfactory tissue source for protoplast isolation and culture for all Brassica cultivars used. The percentages of protoplasts exhibiting cell wall regeneration and division were significantly influenced by cultivar and species examined, with protoplasts from all five cultivars of B. campestris showing much lower rates of cell wall regeneration than those of B. napus and B. oleracea over 24–120 h, and with the levels of cell division in B. napus cultivars being much higher than those in B. campestris and B. oleracea over 1–9 days. The capacity of cell wall regeneration and cell division in cotyledon protoplast culture of the Brassica species appears under strong genetic control. Cell wall regeneration in protoplast culture was not affected by the culture medium used. In contrast, the composition of the culture medium played an important role in determining the level of cell division, and the interaction between medium type and cultivars was very significant.Abbreviations BA benzylaminopurine - CPW Composition of Protoplast Washing-solution - CW Calcolfluor White - EDTA ethylenediamine-tetraacetic acid - KT Kinetin - Md MS modified Murashige and Skoog medium - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

14.
Summary The in vitro culture responses from different explants of a race-specific resistant cultivar (Red Mexican) and a racesusceptible cultivar (Palme?a) to halo-blight pathogen (Pseudomonas syringae pv. phaseolicola were studied. Two kinds of filtrate obtained from a phaseolotoxin producer wild type and a non-producer mutant of P. syringae pv. phaseolicola race-7 were used. Callus formation of Red Mexican was significantly reduced in the presence of phaseolotoxin. Bud-shoot growth was more sensitive than callus formation to other metabolites present in the pathogen filtrate, but the presence of phaseolotoxin in the media showed a positive correlation between resistance to halo blight race-7 pathogen and bud-shoot growth. Our results indicate that differential in vitro responses are influenced by the plant genotype and by the metabolite composition and concentration of the filtrate.  相似文献   

15.
A tissue culture system for different germplasms of indica rice   总被引:4,自引:0,他引:4  
Ge X  Chu Z  Lin Y  Wang S 《Plant cell reports》2006,25(5):392-402
Agrobacterium-mediated transformation of indica rice has been manipulated in only a limited number of cultivars because the majority of indica varieties are recalcitrant to in vitro response. Establishment of a highly efficient and widely used tissue culture system for indica rice will accelerate the application of transformation technology in breeding programs and the study of the functions of indica-specific genes. By manipulating plant growth regulators, organic components and salts within the culture media, we established two media for callus induction and subculture, respectively, in tissue culture of indica rice. The modified media could guarantee the production and proliferation of a great number of embryogenic calli with high regeneration capacity from mature seeds representing different indica rice germplasms. The calli obtained from this system should be ideal material for Agrobacterium-mediated transformation. The results suggest that this optimized tissue culture system will be widely applicable for the tissue culture of indica varieties. Electronic Supplementary Material Supplementary material is available for this article at The first two authors contributed equally to this work.  相似文献   

16.
Summary Plants were regenerated from cotyledon tissue of greenhouse grown seedlings of common buckwheat (Fagopyrum esculentum Moench.). Maximum callus regeneration was induced on Murashige and Skoog (MS) medium containing 2,4-D (2.0 mg l−1) and kinetin (KIN) (0.2 mg l−1) and either 3 or 6% sucrose. Friable callus was transferred to MS media containing KIN and benzylaminopurine (BAP) at varied concentrations for embryogenic callus induction. The optimum medium for embryogenic callus induction was found to be MS medium supplemented with 0.2 mg l−1 KIN, 2.0 mg l−1 BAP and 3% (w/v) sucrose. Variation of sucrose from 3 to 6% did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 13 to 32%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to half-strength MS media with 3% sucrose. Regenerated plants after acclimation were transferred to greenhouse conditions, and both vegetative and floral characteristics were observed for variation. This regeneration system may be valuable for genetic transformation and cell selection in common buckwheat.  相似文献   

17.
Summary Plants have been regenerated from nodular, green callus derived from cotyledon, petiole and leaf lamina explants ofG. argyrea, a perennial relative of the soybean (G. max). The degree of response obtained was governed primarily by the genotype used, accession G1626 proving the most responsive. Shoots were also recovered from about 6.0% of cotyledon protoplasts of this genotype. The implications of these results are discussed in relation to genetic manipulations using this species.  相似文献   

18.
We have evaluated the transformation efficiency of two lettuce (Lactuca sativa L.) cultivars, LE126 and Seagreen, using Agrobacterium tumefaciens-mediated gene transfer. Six-day-old cotyledons were co-cultivated with Agrobacterium cultures carrying binary vectors with two different genetic constructs. The first construct contained the β-glucuronidase gene (GUS) under the control of the cauliflower mosaic virus 35S promoter (CaMV 35S), while the second construct contained the ethylene mutant receptor etr1-1, which confers ethylene insensitivity, under the control of a leaf senescence-specific promoter (sag12). Tissues co-cultivated with the GUS construct showed strong regeneration potential with over 90% of explants developing callus masses and 85% of the calli developing shoots. Histochemical GUS assays showed that 85.7% of the plants recovered were transgenic. Very different results were observed when cotyledon explants were co-cultivated with Agrobacteria carrying the etr1-1 gene. There was a dramatic effect on the regeneration properties of the cultured explants with root formation taking place directly from the cotyledon tissue in 34% of the explants and no callus or shoots observed initially. Eventually callus formed in 10% of cotyledons and some organogenic shoots were obtained (2.86%). These results indicate that the ethylene insensitivity conferred by the etr1-1 gene alters the normal pattern of regeneration in lettuce cotyledons, inhibiting the formation of shoots and stimulating root formation during regeneration.  相似文献   

19.
The influence of culture filtrates of Fusarium oxysporum f.sp. dianthi which causes Fusarium wilt was investigated on growth and viability of carnation tissue cultures and leaf segments. Culture filtrates of avirulent race 1 of this fungus did not affect calli and leaf segments of cultivars both susceptible and resistant to Fusarium wilt. However, culture filtrates of virulent race 2 decreased viability and suppressed growth of callus of the susceptible cultivar. In contrast, callus of the resistant cultivar showed resistance to the culture filtrates. The results of these experiments may provide information on methods of selection of new wilt resistant carnation varieties.Abbreviations A270 absorbance at 270 nm - 2,4-d 2,4-dichlorophenoxyacetic acid - CF-MCD culture filtrate of 16064 grown in MCD medium - MCD medium modified Czapeck-Dox medium - MS medium basal medium of Murashige and Skoog - MW molecular weight - PD medium potato dextrose medium - TTC 2,3,5-triphenyl tetrazolium chloride  相似文献   

20.
Summary Protoplasts were isolated seedling hypocotyls of soybean (Glycine max), and cultured in both liquid and agarose-solidified, modified K8P medium. Nuclear staining revealed that only 2% of protoplasts lacked a nucleus, 93% contained a single nucleus, and 5% contained more than one. Maximum protoplast yields and subsequent division frequencies, in liquid medium, were obtained from 5 days-old seedlings. Maximum division frequencies (54%) were obtained from hypocotyl protoplasts plated at a density of 5×104 ml−1. Using different osmolality reduction régimes for liquid cultures, hypocotyl protoplasts developed into green, nodular callus, similar to that which has previously given rise to shoot buds in perennialGlycine species. This tissue, however, did not produce shoot buds in soybean. N. H. was supported by a SERC CASE studentship and a postdoctoral fellowship from Shell Research Ltd., Sittingbourne, Kent, UK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号