首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biological Control》2010,55(3):316-321
Hot water treatment (HWT) and two yeast antagonists, Candida guilliermondii and Pichia membranaefaciens were investigated separately and together for controlling Botrytis cinerea, and natural infection in tomato fruit stored at 20 °C. Applied separately, both HWT and antagonists inhibited decay caused by B. cinerea, and natural infection. The combination of antagonists and HWT showed better control efficacy. Application of HWT did not affect the growth of C. guilliermondii and P. membranaefaciens in tomato wounds, while HWT induced significant increase in the activities of phenylalanine ammonia-lyase (PAL), chitinase (CHI) and β-1,3-glucanase in fruit. The mechanism by which HWT enhanced the biocontrol efficacy of the antagonistic yeasts may be related to the elicitation of biochemical defense responses in tomato fruit. The combination of antagonistic yeasts and HWT could be a promising method for the control of postharvest diseases of tomato fruit.  相似文献   

2.
The effect of the yeast antagonist Pichia membranaefaciens for control of green mould decay caused by Penicillium citrinum or Verticicladiella abietina and natural decay in postharvest Chinese bayberries (Myrica rubra Seib & Zucc.), and the possible mechanisms were investigated. The results showed that 1 × 109 colony‐forming units (CFU)/ml of washed cell suspensions of the yeast provided better control of green mould decay than yeast in culture broth at the same concentration. Treatment with cell‐free culture filtrates or autoclaved cell cultures had little effect on disease incidence. The concentration of a washed cell suspension of P. membranaefaciens had a significant effect on efficacy in controlling disease incidence. At a concentration range from 1 × 106 to 1 × 109 CFU/ml, the higher the concentration of the antagonist, the lower was the incidence of the disease. In the inoculated wounds of Chinese bayberries, populations of P. membranaefaciens increased by approximately 145‐ and 41‐fold, respectively, after incubation at 20°C for 2 day or at 1°C for 8 day. P. membranaefaciens significantly induced activities of two defence‐related enzymes chitinase and β‐1, 3‐glucanase in Chinese bayberries. The in vitro experiment showed that spore germination and germ tube elongation of the two pathogens were markedly inhibited by washed cell suspensions of P. membranaefaciens. In addition, P. membranaefaciens significantly reduced natural decay in Chinese bayberries. These results indicate that P. membranaefaciens can effectively reduce fruit decay possibly by directly inhibiting pathogen growth and indirectly by inducing disease resistance. Thus, we suggest that P. membranaefaciens has potential as a biocontrol agent to control fruit decay in Chinese bayberries during postharvest storage.  相似文献   

3.
4.
Zhao  Lina  Wang  Yuanjian  Dhanasekaran  Solairaj  Guo  Zhipeng  Chen  Shangjian  Zhang  Xiaoyun  Zhang  Hongyin 《BioControl》2021,66(4):547-558

Blue mold decay is the one of most important postharvest disease of apples caused by the fungus, Penicillium expansum. This study aimed to investigate the biocontrol efficacy of the yeast, Wickerhamomyces anomalus, on postharvest blue mold decay of apples and the relative defense mechanisms. The results indicated that W. anomalus could significantly reduce the blue mold decay of apples, and the maximum inhibition was obtained when the concentration of W. anomalus was 1?×?108 cells ml?1. Furthermore, W. anomalus significantly reduced the fruit decay under ambient conditions, without generating any change in fruit quality. In vitro experiments showed that W. anomalus greatly inhibited the spore germination and germ tube elongation of P. expansum. Besides, its ease of adaptation, stable growth and potential colonization of in apple wounds or surfaces indicated that W. anomalus could compete with P. expansum for nutrients and space, leading to considerable inhibition blue mold decay. W. anomalus significantly induced the activities of polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), phenylalanine ammonia-lyase (PAL), and ascorbate peroxidase (APX) in apples. Moreover, W. anomalus increased the contents of flavonoid and total phenols. All these results suggested that W. anomalus has potential biocontrol efficacy to control the postharvest blue mold decay of apples

  相似文献   

5.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

6.
AIMS: To evaluate beneficial effect of two food additives, ammonium molybdate (NH4-Mo) and sodium bicarbonate (NaBi), on antagonistic yeasts for control of brown rot caused by Monilinia fructicola in sweet cherry fruit under various storage conditions. The mechanisms of action by which food additives enhance the efficacy of antagonistic yeasts were also evaluated. METHODS AND RESULTS: Biocontrol activity of Pichia membranefaciens and Cryptococcus laurentii against brown rot in sweet cherry fruit was improved by addition of 5 mmol l(-1) NH4-Mo or 2% NaBi when stored in air at 20 and 0 degrees C, and in controlled atmosphere (CA) storage with 10% O2 + 10% CO2 at 0 degrees C. Population dynamics of P. membranefaciens in the wounds of fruit were inhibited by NH4-Mo at 20 degrees C after 1 day of incubation and growth of C. laurentii was inhibited by NH4-Mo at 0 degrees C in CA storage after 60 days. In contrast, NaBi did not significantly influence growth of the two yeasts in fruit wounds under various storage conditions except that the growth of P. membranefaciens was stimulated after storage for 45 days at 0 degrees C in CA storage. When used alone, the two additives showed effective control of brown rot in sweet cherry fruit and the efficacy was closely correlated with the concentrations used. The result of in vitro indicated that growth of M. fructicola was significantly inhibited by NH4-Mo and NaBi. CONCLUSION: Application of additives improved biocontrol of brown rot on sweet cherry fruit under various storage conditions. It is postulated that the enhancement of disease control is directly because of the inhibitory effects of additives on pathogen growth, and indirectly because of the relatively little influence of additives on the growth of antagonistic yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained in this study suggest that an integration of NH4-Mo or NaBi with biocontrol agents has great potential in commercial management of postharvest diseases of fruit.  相似文献   

7.
The objective was to reveal the effects of ozone treatment on quality maintenance and resistance to Botrytis cinerea and Penicillium expansum in kiwifruit during postharvest storage. Kiwifruits were treated with 79.44 ppm gaseous ozone for 1 hr once a day for 7 day at 0°C to determine the effects of ozone treatment on the quality and disease incidence caused by B. cinerea and P. expansum in vivo and the growth of B. cinerea and P. expansum in vitro. Ozone treatment significantly reduced the disease incidence of kiwifruit and inhibited the mycelial development and spore germination of B. cinerea and P. expansum. High levels of fruit firmness and titratable acidity were maintained in the ozone‐treated kiwifruit, and the activities of the defence‐related enzymes were remarkably enhanced. Therefore, ozone treatment may be an effective method to maintain the quality of kiwifruit and control its decay during postharvest storage.  相似文献   

8.
Biological control and induced resistance are two of the promising approaches to the control of postharvest diseases. This study was conducted to evaluate the efficacy of salicylic acid (SA) alone or in combination with an antagonistic yeast, Cryptococcus laurentii, in controlling the blue mold disease caused by Penicillium expansum on apple fruit wounds. SA alone significantly inhibited the spore germination of P. expansum in vitro when its concentration was increased to 1000 μg ml−1, but it was not effective in controlling the disease in vivo. Simultaneous application of SA and C. laurentii to the wounds on the apple fruit surface showed that SA could improve the efficacy of C. laurentii against P. expansum in a concentration-dependent manner, being most effective at 10 μg ml−1 but less effective at a higher or lower concentrations. Besides reducing the blue mold incidence in the local wound sites, the combination of C. laurentii with SA at 10 μg ml−1 also had a synergistic effect on the induction of fruit resistance to the disease, which might be associated with a rapid increase in peroxidase, phenylalanineamonialyase and lipoxygenase activities. In addition, SA at 100 μg ml−1 or above showed an adverse effect on the growth of C. laurentii in vitro and in vivo, whereas it had no effect when its concentration was decreased to 10 μg ml−1 or lower. This suggested that SA could enhance the biological activity of C. laurentii in apple fruit by inducing resistance to pathogens based on the antagonistic activity of C. laurentii.  相似文献   

9.
Recombinant Pichia pastoris yeasts expressing cecropin A (GS115/CEC), was evaluated for the control of the blue mold of apple caused by Penicillium expansum due to cecropin A peptide’s effective antimicrobial effects on P. expansum spores by the thiazolyl blue (MTT) assay. Then, the protein concentration was determined and it was expressed at high levels up to 14.2 mg/L in the culture medium. Meanwhile, the population growth was assayed in vivo. The population growth of recombinant strain GS115/CEC was higher than that of non-transformed strain GS115 in red Fuji apples wounds. Recombinant yeast strains GS115/CEC significantly inhibited growth of germinated P. expansum spores in vitro and inhibited decay development caused by P. expansum in apple fruits in vivo when compared with apple fruits inoculated with sterile water or the yeast strain GS115/pPIC (plasmid pPIC9k transformed in GS115). This study demonstrated the potential of expression of the antifungal peptide in yeast for the control of postharvest blue mold infections on pome fruits.  相似文献   

10.
11.
《Fungal biology》2023,127(3):901-908
Blue mold decay caused by Penicillium expansum is one of the most important postharvest diseases of grapes, leading to considerable economic losses. Regarding the increasing demand for pesticide-free foods, this study aimed to find potential yeast strains for biological control of blue mold on table grapes. A total of 50 yeast strains were screened for antagonistic activity against P. expansum using the dual culture method and six strains significantly inhibited the fungal growth. All six yeast strains (Coniochaeta euphorbiae, Auerobasidium mangrovei, Tranzscheliella sp., Geotrichum candidum, Basidioascus persicus, and Cryptococcus podzolicus) reduced the fungal growth (29.6–85.0%) and the decay degree of wounded grape berries inoculated with P. expansum while G. candidum was found to be the most efficient biocontrol agent. On the basis of antagonistic activity, the strains were further characterized by in vitro assays involving inhibition of conidial germination, production of volatile compounds, iron competition, production of hydrolytic enzymes, biofilm-forming capacity, and exhibited three or more putative mechanisms. To our knowledge, the yeasts are reported for the first time as potential biocontrol agents against the blue mold of grapes but more study is required to evaluate their efficiency related to field application.  相似文献   

12.
Aim: To overcome fludioxonil resistance of Penicillium expansum, a mycotoxigenic fungal pathogen causing postharvest decay in apple, by using natural phenolic chemosensitizing agents. Methods and Results: Fludioxonil‐resistant mutants of P. expansum were co‐treated with different oxidising and natural phenolic agents. Resistance was overcome by natural phenolic chemosensitizing agents targeting the oxidative stress–response pathway. These agents also augmented effectiveness of the fungicide, kresoxim‐methyl. Results indicated that alkyl gallates target mitochondrial respiration and/or its antioxidation system. Fungal mitochondrial superoxide dismutase (Mn‐SOD) plays a protective role against alkyl gallates. Conclusions: Natural chemosensitizing agents targeting the oxidative stress–response system, such as Mn‐SOD, can synergize commercial fungicides. Significance and Impact of the Study: Redox‐active compounds can serve as potent chemosensitizing agents to overcome resistance and lower effective dosages of fungicides. This can reduce costs with coincidental lowering of environmental and health risks.  相似文献   

13.
Postharvest diseases cause considerable losses of harvested fruits during transportation and storage. Many yeast species have been reported as good antagonists against postharvest pear pathogens. In this work, we used a novel selection strategy that involves the isolation of yeasts from washing fluids, showing biocontrol activity against a regional Penicillium expansum strain (primary screening), originally obtained from fruit wounds after long time storage at ?1/0°C. About 26 isolates representative of the 11 yeast species identified in the 27 selected washing waters were chosen to be evaluated in a secondary screening against a regional Botrytis cinerea strain on pear wounds. Among yeasts tested, 38% showed complete control of P. expansum, but only 15% reduced the decay incidence of B. cinerea to 60–80% at ?1/0°C. These results reveal that some of the yeasts found can be biological alternatives to fungicides in the control of P. expansum and B. cinerea infections. Based on the data obtained, our strategy seems to be much more effective than the previously reported methods in obtaining successful biocontrol agents.  相似文献   

14.
15.
Beyer M  Lau S  Knoche M 《Planta》2005,220(3):474-485
Water uptake and transpiration were studied through the surface of intact sweet cherry (Prunus avium L.) fruit, exocarp segments (ES) and cuticular membranes (CM) excised from the cheek of sweet cherry fruit and astomatous CM isolated from Schefflera arboricola (Hayata) Hayata, Citrus aurantium L., and Stephanotis floribunda Brongn. leaves or from Lycopersicon esculentum Mill. and Capsicum annuum L. var. annuum Fasciculatum Group fruit. ES and CM were mounted in diffusion cells. Water (deionized) uptake into intact sweet cherry fruit, through ES or CM interfacing water as a donor and a polyethyleneglycol (PEG 6000, osmotic pressure 2.83 MPa)-containing receiver was determined gravimetrically. Transpiration was quantified by monitoring weight loss of a PEG 6000-containing donor (2.83 MPa) against dry silica as a receiver. The permeability coefficients for osmotic water uptake and transpiration were calculated from the amount of water taken up or transpired per unit surface area and time, and the driving force for transport. Permeability during osmotic water uptake was markedly higher than during transpiration in intact sweet cherry fruit (40.2-fold), excised ES of sweet cherry fruit (12.5- to 53.7-fold) and isolated astomatous fruit and leaf CM of a range of species (on average 23.0-fold). Partitioning water transport into stomatal and cuticular components revealed that permeability of the sweet cherry fruit cuticle for water uptake was 11.9-fold higher and that of stomata 56.8-fold higher than the respective permeability during transpiration. Increasing water vapor activity in the receiver from 0 to 1 increased permeability during transpiration across isolated sweet cherry fruit CM about 2.1-fold. Permeability for vapor uptake from saturated water vapor into a PEG 6000 receiver solution was markedly lower than from liquid water, but of similar magnitude to the permeability during self-diffusion of 3H2O in the absence of osmotica. The energy of activation for self-diffusion of water across ES or CM was higher than for osmotic water uptake and decreased with increasing stomatal density. The data indicate that viscous flow along an aqueous continuum across the sweet cherry fruit exocarp and across the astomatous CM of selected species accounted for the higher permeability during water uptake as compared to self-diffusion or transpiration.  相似文献   

16.
Morphological change, such as from yeast-like to biofilm, has been recently considered to be involved in the mode of action of some antagonistic yeasts used as postharvest biocontrol agents. In the present study, the biocontrol yeast, Pichia kudriavzevii, reversibly shifted from a yeast-like morphology on yeast peptone dextrose (YPD) medium with 2% agar to a biofilm morphology on YPD with 0.3% agar. The tolerance of P. kudriavzevii to heat and oxidative stresses, as well as the biocontrol efficacy against postharvest diseases on pear fruit, increased significantly from the yeast-like form to the biofilm form. The activity of antioxidant enzymes, including catalase and superoxidase dismutase, in the biofilm form was also significantly higher. The elevated activity of antioxidant enzymes was associated with less protein and lipid oxidation in the biofilm form, compared to the yeast-like form, under heat and oxidative stresses. These results suggest that activation of antioxidant system with the morphology shift contributes to the enhancement of abiotic stress tolerance and biocontrol performance of P. kudriavzevii. These findings provide new information on the biology of yeast antagonists that is essential for their potential application and development.  相似文献   

17.
Lingfei Xu  Yanmin Du 《BioControl》2012,57(3):451-461
The yeast antagonist Candida guilliermondii and ultraviolet-C (UV-C) treatment were investigated for controlling infection following artificial inoculation with Penicillium expansum or Botrytis cinerea, or natural infection in pear fruit stored at 20°C. Applied separately, both C. guilliermondii and UV-C (5 kJ m−2) effectively inhibited decay caused by P. expansum or B. cinerea, and natural infection. The combination of C. guilliermondii and UV-C showed better control efficacy. Application of UV-C did not affect the growth of C. guilliermondii in pear fruit wounds, while UV-C induced a significant increase in the activities of chitinase, β-1,3-glucanase, catalase and peroxidase in pear fruit. The mechanism by which UV-C enhanced the biocontrol efficacy of C. guilliermondii may be related to the elicitation of defense responses in pear fruit. The combination of C. guilliermondii and UV-C radiation could be a promising method for the control of P. expansum and B. cinerea in pear fruit.  相似文献   

18.
Aims: In this study, the potential of calcium chloride (CaCl2) application to improve the efficacy of the marine antagonist Rhodosporidium paludigenum in controlling postharvest diseases of cherry tomatoes was assessed. Methods and Results: CaCl2 alone was found not to have any direct influence on the population growth of R. paludigenum in NYDB cultures or in cherry tomato wounds. However, the combined treatments with 1 × 108 cells ml?1R. paludigenum and CaCl2 at the concentration from 0·5 to 2% showed high activities to reduce black rot caused by Alternaria alternata in cherry tomato wounds, significantly higher than those of R. paludigenum or CaCl2 alone. Meanwhile, 0·5% CaCl2 in combination with 1 × 108 cells ml?1R. paludigenum greatly inhibited the natural decay of cherry tomatoes in 21 days’ storage at 25°C. Conclusions: The combination of R. paludigenum and CaCl2 enhances the inhibition of black rot and natural decay of postharvest cherry tomatoes. The results from this study provide a new way to improve the efficiency of R. paludigenum in maintaining the quality of postharvest fruits and vegetables. Significance and Impact of the Study: The marine yeast R. paludigenum combined with CaCl2 has greatly potential use as an alternative to chemical fungicides in inhibiting postharvest decay on cherry tomatoes.  相似文献   

19.
Pear fruit (Pyrus pyrifolia L. cv. Yali) treated by different elicitors, such as salicylic acid (SA), oxalic acid, calcium chloride, and antagonistic yeast Cryptococcus laurentii, were investigated to determine the induction of defense responses. The possible mechanism by which elicitors induced the resistance of pear fruit against postharvest disease was also evaluated. The results indicated that all the elicitors could significantly enhance defense-related enzyme activities, such as β-1,3-glucanase, phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activity, and reduce the disease incidence caused by Alternaria alternata in pear fruit (P=0.05). Among these different elicitors, SA treatment showed the best result in inducing the defense responses and reducing the decay in pear fruit.  相似文献   

20.
Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety “Big Star*” and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome‐wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号