首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An efficient short-term storage system of synthetic seeds, produced using in vitro shoot tips of the monopodial orchid hybrid Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl. (AV), was developed. In vitro shoot tips (3–4 mm) were successfully encapsulated, resulting in uniform spherical beads (capsules), using 3 % sodium alginate with 75 mM CaCl2·2H2O. Maximum (~100 %) conversion (into plantlets with shoot and root) of capsules (or synthetic seeds) was achieved on quarter-strength Murashige and Skoog regrowth medium, while full-strength MS medium was required for effective conversion of non-encapsulated shoot tips. The capsules showed distinct difference in their response to temperature during storage. The conversion efficiency declined upon storage duration at both 4 and 25 °C, with those stored at 25 °C being more tolerant to storage. Capsules stored at 4 °C had rapid deterioration and faced complete death within 160 days while those stored for 200 days at 25 °C showed relatively high conversion (71.6 %). An inter-simple sequence repeats fingerprinting approach, employed on indiscriminately chosen plantlets from converted capsules (following 4 and 25 °C of storage), ensured the post-storage genetic stability.  相似文献   

2.
Barley seeds were treated with ethyl methanesulphonate (EMS), washed for 24 h, redried to 15 per cent moisture and stored at 25°C. The criteria used for expressing the effect of storage were chromosomal aberrations in root tips, M1 germination, M1 seedling height, M1 survival and the frequency of M2 chlorophyll mutants. The increase of the M1 biological injury due to storage was not influenced:
  1. by applying EMS solutions at pH 2, pH 7 and pH 10,
  2. by lowering the EMS concentration and increasing the treatment time,
  3. by different variations of washing with water and by washings with 0.005 N NaOH, 200 mM cysteine or 200 mM thiourea. The rate of the increase of the M1 injury due to storage depends on the EMS dose. With a decrease in the EMS dose the storage effect is more delayed.
  相似文献   

3.
Seeds of barley (Hordeum vulgare L.) and mung bean (Vigna radiata(L.) Wilczek), with orthodox seed storage behaviour, were imbibedfor between 8 h and 96 h at 15 °C and 25 °C, respectively,while barley seeds were also maintained in moist aerated storageat 15 °C for 14 d. These seeds and seedlings, together withcontrols, were then dried to various moisture contents between3% and 16% (wet basis) and hermetically stored for six monthsat —20°C, 0°C or 15°C. In both species, neitherdesiccation nor subsequent hermetic storage of the control lotsresulted in loss in viability. The results for barley seedsimbibed for 24 h were similar to the control, but desiccationsensitivity increased progressively with duration of imbibitionbeyond 24 h in barley or 8 h in mung bean; these treatmentsalso reduced the longevity of the surviving seeds in air-drystorage. Loss in viability in barley imbibed for 48 h was mostrapid at the two extreme seed storage moisture contents of 3·6%and 14·3%, and in both these cases was more rapid at15 °C than at cooler temperatures. Similarly, for mung beanimbibed for 8 h, loss in viability was most rapid at the lowest(4·3%) moisture content, but in this case it was morerapid at –20 °C than at warmer temperatures. Thus,these results for the storage of previously imbibed orthodoxseeds conform with the main features of intermediate seed storagebehaviour Key words: Barley, Hordeum vulgare L., mung bean, Vigna radiata (L.) Wilczek, desiccation sensitivity, seed longevity, seed storage behaviour  相似文献   

4.
Soybean seed samples inoculated with spores of Aspergillus ruber were stored for 20 to 140 days at 25 ± 1 °C with moisture content varying from 11.3% to 17.7%. Seeds were colonised by the fungus within 20 days at all moisture levels. Ergosterol concentration in seeds increased with time of storage, being slow in samples with moisture content of 11.3% to 13.1% and more rapidly in those with higher moisture content. Free fatty acid (FFA) content also increased following the pattern of ergosterol. Equations were used to predict minimum safe storage period of the seeds at 25 °C. The rise in FFA is due to increase of A. ruber mass within the seed. Fungal growth did not affect fatty acids profiles or iodine index of the extracted oil. The results suggest revision of the present recommendations regarding seed moisture during storage. The FFA concentration of a seed lot can be used as a sensitive indicator of seed deterioration due to storage fungi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
The ochratoxin A and B (OTA, OTB) production by a toxigenic isolate ofPenicillium verrucosum grown on brewing barley up to six weeks was studied at a storage temperature of 25 °C and different moisture and water activity conditions. Sorption isothermes for barley were prepared at temperatures of 10°C, 15°C and 25°C. OTA was produced after 2 weeks of storage at moisture contents of ≥19%, which is equivalent to water activities (aw) of 0.83 (adsorptive) and 0.82 (desorptive) at 25 °C. Increased OTA concentrations (5.8-fold and 16.1-fold) were noticed when the moisture contents were adjusted to 20% (aw [ads] 25 °C=0.86) and 21% (aw [ads] [ 25 °C=0.88), respectively. An increase was also shown during storage of 4 and 6 weeks (1.2-fold and 2.4-fold, respectively). Production of OTB was shown to occur at moisture contents ≥18% (aw [ads] 25 °C=0.81). The findings document that OTA and OTB are not produced byP. verrucosum grown on barley stored below 18% moisture content.  相似文献   

6.
Barley seeds were treated for 3 h at 25°C with 240 mM ethyl methanesulphonate (EMS), washed for 18 h, treated with various concentrations of unbuffered sodium azide (pH 6.7–7.3) for 3 h at 25°C, re-dried to 30% water content and either sown immediately or stored at 25°C for 12 days and then sown. The synergistic action of sodium azide post-treatment has been demonstrated only for the EMS-induced M1 germination reduction, while the EMS-induced M1 sterility and the yield of M2 chlorophyll mutants were unaffected. The ?storage” recovery from EMS-induced mutagenic effects was insensitive to sodium azide post-treatment. The 12 day-seed storage at 25°C brought about an improvement of M1 germination, M1 survival, M1 fertility and a decrease in the amount of M2 mutants, regardless of whether sodium azide post-treatment was applied or not.  相似文献   

7.
Seeds of lettuce (Lactuca sativa L.) and sunflower (Helianthusannuus L.) were stored hermetically at 35 °C with 11 differentmoisture contents between 1·3 and 6·9%, and between1·3 and 7·1% of fresh mass, respectively. Germinationand vigour (mean germination time, root length, seedling dryweight) were determined after storage for 0, 8, or 16 weeks(sunflower) or 0, 8, 16, or 48 weeks (lettuce) in these environmentsfollowed by various humidification treatments (to avoid imbibitioninjury). The range of seed storage moisture contents over whichdeterioration was minimized depended upon the criterion of deteriorationused, and varied somewhat between species. Comparison of theseranges for seeds stored for the longest durations showed thatfor some criteria seed performance was poorer (P < 0·05)at both the lowest and highest moisture contents investigatedthan at certain of the intermediate storage moisture contents(e.g, most rapid germination occurred in sunflower followingstorage at 2·2-4·7% moisture content), whereasfor other criteria all the drier storage moisture contents weresuperior to the more moist (e,g. greatest seedling growth occurredin sunflower following storage at 1·3-5·1% moisturecontent). But none of these results suggested that lettuce andsunflower seeds stored hermetically at 2·5-3·0%or 2·2-2·5% moisture content, respectively, wereless vigorous than at any other moisture content tested. Inboth species, these storage moisture contents are in equilibriumwith about 8-10% relative humidity (r.h.) at 20 °C, whichis similar to and indeed marginally less than the 10-13% r.h.recommended following earlier studies on the longevity of seedsin hermetic storage at much warmer temperatures. Thus, theseresults show no evidence that the optimum seed moisture contentfor storage increases with decrease in temperature, at leastover the range 35-65 °C, as has been suggested elsewhere.We conclude that the international recommendation for the long-termseed storage for genetic conservation at 5 ± 1% moisturecontent should not be revised upwardly, and that in situationswhere refrigeration cannot be provided storage at even lowermoisture contents is worthy of further investigation for thoseseeds in which desiccation at 20 °C to equilibrium at 10%r.h. results in moisture contents well below 5%.Copyright 1995,1999 Academic Press Helianthus annuus L., sunflower, Lactuca sativa L., lettuce, desiccation, seed storage, seed vigour  相似文献   

8.
The storage potential of seeds harvested at weekly intervals after controlled pollination was studied in three diverse cytoplasmic male sterile pearl millet (Pennisetum glaucum) lines. In the first experiment in 1989, a comparison of p50 (time for viability to decline to 50% during storage) among seeds of the line DSA 105A harvested 14, 21, 28, 35 and 42 days after pollination (DAP), and then stored at 35°C with 15% moisture content or 40°C with 13% moisture content, showed that those harvested 35 DAP had the greatest longevity. In the second experiment in 1990, a comparison of p50 within the lines 5141A and L 67A harvested 28, 35 and 42 DAP, and then stored at 40°C with 13% moisture content, showed that seeds of both lines harvested 42 DAP had the greatest longevity. In both the seasons, and in all three lines, maximum seed longevity (p50) was attained one week after physiological maturity (defined as the end of the grain filling period), which is therefore the optimum time of harvest to obtain good quality seeds for conservation.  相似文献   

9.
Effects of dehydration, storage temperature and humidificationon germination of Salix alba andS. matsudana seeds were studied.Newly released seeds showed 100% germination before and afterdehydration to 11–12% moisture content. Germination ofthe high vigour lot (100% initial normal germination) was notaffected by dehydration to 6.7% moisture content but germinationdecreased with further dehydration to 4.3%. The lower vigourlot (75% initial normal germination) was more susceptible todehydration and germination decreased following dehydrationto 6.7% moisture content. Dry seeds of both species survivedimmersion in liquid nitrogen without loss of viability. Thegermination of seeds stored with 9% moisture content decreasedto 35–40% in 5 months at -20°C or in 2 months at 5°C.However, at 25°C seeds entirely lost viability within 2weeks. Seeds showed improved performance when stored at -70°C> - 20°C > 5°C > 25°C and tolerated dehydrationto a moisture content in equilibrium with 15% relative humidity.Results suggest that they are orthodox in storage behaviouralthough they are short-lived. Humidification treatment of lowvigour seed lots resulted in a remarkable increase in germinationpercentage. Copyright 2000 Annals of Botany Company Salix alba, Salix matsudana, willow, seed storage behaviour, dehydration, humidification, cryopreservation  相似文献   

10.
Crisp lettuce plants cv. Saladin were grown from the time they started flowering, at 20/10°C (16 h day, 8 h night), 25/15°C and 30/20°C in glasshouses on two occasions in 1985. Yields of seed increased from, on average, 15 g to 27 g and then fell to 20 g per plant with progressive increases in temperature. The number of mature florets per plant increased with temperature but the number of seeds per mature floret was lower at 20/10°C and 30/20°C than at 25/15°C. An increase in temperature reduced mean seed weight by up to 45%, seed volume by 15%, cell numerical volume density (Nv) by 27% and the number of cells per seed by 39%. Percentage seed germination reached a maximum early in seed development at the stage when the pappus appeared through the involucral bracts. Differences in percentage germination and vigour of seeds (slope test) from different temperatures were accounted for largely by the effects on mean seed weight. However, when germinated at 30°C seeds produced at 30/20°C germinated more readily than those produced at 25/15°C or 20/10°C. Seed vigour gradually increased with an increase in the length of storage after harvest, reaching a maximum after 260 days. In general, seeds produced at 25/15°C exhibited a greater variation in numbers of seeds per floret, Nv, seed weight, times of seedling emergence, seedling and mature head weight than seeds produced at lower or higher temperatures.  相似文献   

11.
The effects of osmoconditioning on the germination at 15 and25 °C of pepper (Capsicum annuum L.) seeds were studiedover a 3-year period with respect to temperature of storage.Untreated seeds stored at 5 °C showed high germinabilitythroughout the entire storage period, whereas untreated seedsstored at 25 °C showed a progressive decline in germinability,especially when assayed at 15 °C. Seeds that had been osmoconditionedprior to storage retained a high level of germinability irrespectiveof either storage or germination temperatures. When seeds thathad been stored at 25 °C were osmoconditioned after storage,there was a significantly higher germinability (assayed at 15 °C) in comparison with the corresponding untreated seeds.Seeds that were osmoconditioned twice (prior to and after storage)germinated in a similar way to those that had been osmoconditionedonce only Lactuca saliva L., lettuce, Hordeum oulgare L., barley, seed storage, moisture content, relative humidity, water potential, temperature, oxygen  相似文献   

12.
Anaerobic conditions, the inhibitor of aerobic respiration-sodium azide and the inhibitor of proteosynthesis-chloramphenicol did not influence the increase of toxic and mutagenic effects during the storage of ethyl methanesulphonate-treated barley seeds at 15 per cent water content. The storage of ethyl methanesulphonate-treated seeds at ? 20 °C or at 0 °C avoided all after-effects. With increasing storage temperature (5 °C, 15 °C and 25 °C) the increase of injury due to storage was more pronounced.  相似文献   

13.
The effects of kinetin (6-furfurylaminopurine) on viability during storage of recalcitrant sal (Shorea robusta Gaertn. f.) seeds at low temperature (15°C) were investigated. The freshly mature sal seeds showed an absolute loss of viability within 6–7 dah (days after harvest) when stored at ambient or at 15°C (control). Storage of these seeds at 15°C after kinetin (10 ppm) treatment prolonged the viability period up to 35 days with 20% germination. The kinetin-treated seeds exhibited 100% germination up to 10 days compared with 3 days in controls. Measurements of leachate conductivity, ·O 2 and lipid peroxidation registered gradual increases from 0 dah onward to 35 dah with significantly low levels compared with controls. On the other hand, an enormous increase in superoxide dismutase activity was discernible for a longer duration (0–35 dah) in kinetin-treated seeds than in control seeds where it remained for 3 dah. The role of kinetin in prolonging seed viability by reducing the loss of leachates, lipid peroxidation, ·O 2, and enhancing of superoxide dismutase is discussed. Received October 7, 1997; accepted January 27, 1998  相似文献   

14.
The germination of seeds of three species of forage grasses, Lolium perenne, Festuca pratensis and Dactylis glomerata, was studied after storage for 3–5 years under five different storage conditions: in aluminium foil packets at —25°C, 0°C and laboratory temperature (c. 18°C), and in manilla paper packets at 0°C and laboratory temperature. With Lolium perenne and Festuca pratensis high germination values at 3 and 7 days were obtained from seed stored at — 25 °C and 0°C in foil packets (5% moisture), but at laboratory temperatures, seed from foil packets gave lower germination values than those from manilla paper packets. At all three temperatures Dactylis glomerata germination after 7 and 14 days was higher in seed stored in foil than in manilla packages. With all three species stored in manilla packets, germination was higher after laboratory than cold storage.  相似文献   

15.
A series of experiments were carried out to study the effects of different drying regimes on the survival of newly-germinated (radicle emerged 0·5-1·5 mm through the seed coat) cabbage seeds and to establish a treatment for reducing the moisture content of these germinated seeds. A preliminary surface-drying step proved necessary to avoid seed agglutination during the main drying stage. Of the drying regimes compared both viability and vigour were most effectively maintained in air, conditioned to between 20 and 30°C and with 80% r.h., flowing through the seeds at 0·25 m s-1. Under these conditions, the viability and vigour of newly-germinated seed was maintained during drying to an equilibrium moisture content of c. 14%. At this moisture content further radicle growth was prevented and seeds remained free-flowing and separate for sowing or for further treatment.  相似文献   

16.
Pearl millet is increasingly being grown as a premium-value grain for the recreational wildlife and poultry industries in the southern US. We conducted three experiments to assess grain mold development in storage conditions typically encountered in the region of production. Variables included production year, temperature, relative humidity, atmosphere, and grain moisture content. In the first experiment, grain was stored for 9 weeks at 20 or 25°C and maintained at 86% or 91% relative humidity (r.h.). In the second experiment, grain was stored for 9 weeks at 20 or 25°C in either air (aerobic) or N2 (anaerobic), and maintained at 100% r.h. In the third experiment, high-moisture grain was stored for 3 weeks at 20 or 25°C and maintained at 100% r.h. Grain was sampled at weekly intervals and plated to determine changes in fungal frequency. Fungi isolated included Fusarium chlamydosporum (19% of grain), Curvularia spp. (14%), F. semitectum (16%), Alternaria spp. (9%), Aspergillus flavus (8%), “Helminthosporium”-type spp. (6%), and F. moniliforme sensu lato (3%). Year of grain production significantly affected isolation frequency of fungi. Isolation frequencies from low-moisture grain were rarely affected by temperature, relative humidity, or atmosphere treatments, but was affected by storage duration for some fungi. Changes in isolation of toxigenic fungi occurred in high-moisture grain. Isolation frequency of F. chlamydosporum increased in grain stored at 86% and 91% r.h. Incidence of A. flavus increased in high-moisture grain treatments, particularly at 25°C. Incidence of deoxynivalenol was not affected by storage treatment. Low concentrations of nivalenol were detected in most grain incubated at 100% r.h. Zearalenone was detected only when grain moisture content was 20–22%. Aflatoxin contamination averaged 174 ng g−1 over all treatments, and increased up to 798 ng g−1 in high-moisture grain at stored at 25°C.  相似文献   

17.
Seeds with a water‐impermeable seed coat and a physiologically dormant embryo are classified as having combinational dormancy. Seeds of Sicyos angulatus (burcucumber) have been clearly shown to have a water‐impermeable seed coat (physical dormancy [PY]). The primary aim of the present study was to confirm (or not) that physiological dormancy (PD) is also present in seeds of S. angulatus. The highest germination of scarified fresh (38%) and 3‐month dry‐stored (36%) seeds occurred at 35/20°C. The rate (speed) of germination was faster in scarified dry‐stored seeds than in scarified fresh seeds. Removal of the seed coat, but leaving the membrane surrounding the embryo intact, increased germination of both fresh and dry‐stored seeds to > 85% at 35/20°C. Germination (80–100%) of excised embryos (both seed coat and membrane removed) occurred at 15/6, 25/15 and 35/20°C and reached 95–100% after 4 days of incubation at 25/15 and 35/20°C. Dry storage (after‐ripening) caused an increase in the germination percentage of scarified and of decoated seeds at 25/15°C and in both germination percentage and rate of excised embryos at 15/6°C. Eight weeks of cold stratification resulted in a significant increase in the germination of scarified seeds at 25/15 and 35/20°C and of decoated seeds at 15/6 and 25/15°C. Based on the results of our study and on information reported in the literature, we conclude that seeds of S. angulatus not only have PY, but also non‐deep PD, that is, combinational dormancy (PY + PD).  相似文献   

18.
Crane J  Kovach D  Gardner C  Walters C 《Planta》2006,223(5):1081-1089
Seeds with ‘intermediate’ storage physiology store poorly under cold and dry conditions. We tested whether the poor shelf life can be attributed to triacylglycerol phase changes using Cuphea carthagenensis (Jacq.) seeds. Viability remained high when seeds were stored at 25°C, but was lost quickly when seeds were stored at 5°C. Deterioration was fastest in seeds with high (≥0.10 g g−1) and low (0.01 g g−1) water contents (g H2O g dry mass−1), and slowest in seeds containing 0.04 g g−1. A 45°C treatment before imbibition restored germination of dry seeds by melting crystallized triacylglycerols. Here, we show that the rate of deterioration in C. carthagenensis seeds stored at 5°C correlated with the rate that triacylglycerols crystallized within the seeds. Lipid crystallization, measured using differential scanning calorimetry, occurred at 6°C for this species and was fastest for seeds stored at 5°C that had high and very low water contents, and slowest for seeds containing 0.04 g g−1. Germination decreased to 50% (P50) when between 16 and 38% of the triacylglycerols crystallized; complete crystallization took from 10 to over 200 days depending on water content. Our results demonstrate interactions between water and triacylglycerols in seeds: (1) water content affects the propensity of triacylglycerols to crystallize and (2) hydration of seed containing crystallized triacylglycerols is lethal. We suggest that these interactions form the basis of the syndrome of damage experienced when seeds with intermediate storage physiologies are placed in long-term storage.  相似文献   

19.
Seeds of Hancornia speciosa germinated best at a temperatureof 20–30 °C. The viability of the seeds during storagewas short and the best storage conditions for viability entailedkeeping the seeds in polyethylene bags. Seed viability was maintainedonly when the seeds were stored at a moisture content above30%; storage conditions which allowed dehydration resulted ina rapid loss of viability (the seeds showed recalcitrant behaviour). Low temperature during storage did not improve longevity. Arelationship between germination and moisture content was established,but when the moisture content fell below 25% there was a drasticreduction of germination. After 9 weeks of storage, even athigh moisture content, seeds lost viability. Loss of seed viability during seed dehydration was associatedwith increased leakage of electrolytes and organic solutes,and reduced tetrazolium staining during subsequent imbibition. Hancornia speciosa, germination, recalcitrant seeds, storage, moisture  相似文献   

20.
Effects of storage were tested on germination ofDioscorea composita (Dioscoreaceae) seeds. Freshly collected seeds and seeds stored at 25°C in paper bags from 1 to 11 mo or for 4 and 5 yr were used in most of the experiments. Seeds were tested for germination at 20, 25, 30, 35, 25–20, and 25–35°C in white light and in darkness. Initiation of germination was delayed in freshly harvested seeds, and dormancy was reduced in seeds stored for about 9 mo. Viability of the seeds decreased after 4 and 5 yr of storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号