首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human cell line U937 was used as a model for differentiation along the mononuclear phagocyte lineage. Following treatment with the phorbol ester TPA, PGE2 and TxB2 secretion was induced 50-100-fold, and both PGF2 alpha and PGI2 levels became detectable in the supernatant of TPA-differentiated U937 cells. The content of the prostaglandin precursor, arachidonic acid, remained unchanged in the cellular phospholipids of undifferentiated and TPA-differentiated U937 cells. Of the enzymes involved in the availability and metabolism of arachidonic acid, phospholipase A2 activity was increased 2-fold in the membranes of TPA-differentiated U937 cells, whereas lysophosphatide acyltransferase activity remained unaltered. Cyclooxygenase activity, however, was enhanced 5-10-fold, which was due to enhanced expression of the enzyme as demonstrated by dot-blot analysis. The data suggest that the capacity to secrete prostaglandins is acquired during differentiation with TPA and results mainly from an increased cyclooxygenase activity. Despite the capacity of TPA-differentiated U937 cells to synthesize prostaglandins, none of the known monocytic stimuli further stimulated prostaglandin secretion in TPA-differentiated U937 cells. Generation of leukotrienes appears to represent a later state in the differentiation along the monocyte-macrophage lineage, since neither LTB4 nor cysteinyl-leukotrienes were detectable in the supernatants of either undifferentiated or TPA-differentiated U937 cells.  相似文献   

2.
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

3.
Human monocytes are known to metabolize arachidonic acid (AA) and to release prostaglandins upon stimulation. Previous data indicate that in vitro maturation and differentiation of monocytes result in alteration of this property with greatly diminished response to stimulators of release of prostaglandin E (PGE) and thromboxane B2 (TxB2) occurring after cells have been cultured. To further study the effects of differentiation on human monocyte AA metabolism, a model system was established based upon the human histiocytic cell line U937. Among tested stimulants, which included opsonized zymosan, complement fragment C3b, phorbol myristate acetate (PMA), calcium ionophore A23187, and concanavalin A, it was found that Escherichia coli lipopolysaccharide (LPS) was unique in that it stimulated increased release of TxB2 from U937 cells. The effect of the phorbol ester PMA, a compound commonly used to induce differentiation of U937, on the ability of U937 to respond to LPS was examined. Following 48 hr of treatment with PMA, U937 became capable of releasing both PGE and TxB2 in response to small doses of LPS. As previously observed for human monocytes, the release of PGE was delayed for several hours following stimulation and failed to reach maximal cumulative levels in culture until 24-48 hr following stimulation. In contrast to human monocytes, PMA-induced U937 were capable of maintaining their responsiveness to LPS for several days. Thus, the U937 cell line provides a useful model for study of the effects of differentiation of human mononuclear phagocytes on their ability to metabolize AA, and for the effects of LPS on histiocytic tumor cell prostaglandin release.  相似文献   

4.
5.
Membrane-associated interleukin 1 (IL 1) activity was induced on the human macrophage tumor cell line, U937, by pretreatment with phorbol myristic acid (PMA). Incubation of PMA-treated, paraformaldehyde-fixed U937 cells with the murine cell line D10.G4.1 in the presence of concanavalin A caused an increase in DNA synthesis as measured by the uptake of tritiated thymidine. Paraformaldehyde-fixed U937, not pretreated with PMA, showed little or no activity. A rabbit polyclonal antibody directed against human IL 1 neutralized all membrane-associated IL 1-like activity, as measured by the inhibition of D10.G4.1 cell proliferation. PMA-treated U937 caused a pronounced enhancement of PGE2 production from a human chondrosarcoma cell line, SW-1353. Membrane-associated IL 1 induced a more potent PGE2 response than did a maximal concentration of soluble IL 1. Rabbit antihuman IL 1 neutralized membrane-bound IL 1 induction of PGE2. The data presented here raise the possibility that membrane-bound IL 1 may play a primary role in the pathophysiology of the inflammatory disease process.  相似文献   

6.
7.
8.
In Madin-Darby canine kidney D1 cells extracellular nucleotides activate P2Y receptors that couple to several signal transduction pathways, including stimulation of multiple phospholipases and adenylyl cyclase. For one class of P2Y receptors, P2Y2 receptors, this stimulation of adenylyl cyclase and increase in cAMP occurs via the conversion of phospholipase A2 (PLA2)-generated arachidonic acid (AA) to prostaglandins (e.g. PGE2). These prostaglandins then stimulate adenylyl cyclase activity, presumably via activation of prostanoid receptors. In the current study we show that agents that increase cellular cAMP levels (including PGE2, forskolin, and the beta-adrenergic agonist isoproterenol) can inhibit P2Y receptor-promoted AA release. The protein kinase A (PKA) inhibitor H89 blocks this effect, suggesting that this feedback inhibition occurs via activation of PKA. Studies with PGE2 indicate that inhibition of AA release is attributable to inhibition of mitogen-activated protein kinase activity and in turn of P2Y receptor stimulated PLA2 activity. Although cAMP/PKA-mediated inhibition occurs for P2Y receptor-promoted AA release, we did not find such inhibition for epinephrine (alpha1-adrenergic) or bradykinin-mediated AA release. Taken together, these results indicate that negative feedback regulation via cAMP/PKA-mediated inhibition of mitogen-activated protein kinase occurs for some, but not all, classes of receptors that promote PLA2 activation and AA release. We speculate that receptor-selective feedback inhibition occurs because PLA2 activation by different receptors in Madin-Darby canine kidney D1 cells involves the utilization of different signaling components that are differentially sensitive to increases in cAMP or, alternatively, because of compartmentation of signaling components.  相似文献   

9.
Interleukin 6 (IL 6), IL 1 alpha, IL beta and tumor necrosis factor (TNF) alpha are four cytokines induced in monocytes by lipopolysaccharide (LPS); however, it is unclear whether the mechanisms which control their production are similar. In this study, we report the effects of prostaglandin E2 (PGE2), and two other cAMP-elevating agents, dibutyryl cAMP and 3-isobutyl-1-methyl-xanthine, on the in vitro LPS-induced production of IL 6, IL 1 alpha, IL 1 beta and TNF alpha by human monocytes. The production of these four cytokines was found to be selectively regulated in monocytes, by increases in intracellular cAMP levels. In effect, such agents enhanced, in a dose-dependent manner, both extracellular and cell-associated IL 6 production by LPS-stimulated monocytes. In contrast, it was confirmed, using the same samples, that these cAMP-elevating agents inhibit both extracellular and cell-associated TNF alpha production in a dose-dependent manner. IL 1 alpha and IL 1 beta production, measured by means of specific immunoreactive assays, were not significantly modified. Kinetic analysis showed that the potentiating effect of cAMP on IL 6 production, along with its inhibiting effect on TNF alpha production, could be seen as early as 1 hr after LPS stimulation. These results demonstrate that IL 6, TNF alpha, IL 1 alpha and IL 1 beta production can be differently modulated by an agent, PGE2, which is produced simultaneously by LPS-stimulated monocytes. Such differential autocrine modulation may play an important role in the regulation of the production of cytokines participating in immune and inflammatory responses.  相似文献   

10.
11.
Recent studies have shown that normal human alveolar macrophages and blood monocytes, as well as HL-60 and U937 monocyte cell lines, newly express IL-2R after stimulation with rIFN-gamma or LPS. In addition, macrophages transiently express IL-2R in vivo during immunologically mediated diseases such as pulmonary sarcoidosis and allograft rejection. We therefore investigated in vitro factors that modulate macrophage expression of IL-2R. IL-2R were induced on normal alveolar macrophages, blood monocytes, and HL-60 cells using rIFN-gamma (24 to 48 h at 240 U/ml), and cells were cultured for an additional 12 to 24 h with rIL-2 (100 U/ml), recombinant granulocyte-macrophage CSF (rGM-CSF, 1000 U/ml), rGM-CSF plus indomethacin (2 X 10(-6) M), PGE2 (0.1 to 10 ng/ml), 1 X 10(-6) M levels of caffeine, theophylline, and dibutyryl cyclic AMP, or medium alone. IL-2R expression was quantitated by cell ELISA (HL-60 cells) or determined by immunoperoxidase staining (alveolar macrophages, blood monocytes, and HL-60 cells), using anti-Tac and other CD25 mAb. PGE production was assayed by RIA. We found greater than 95% of alveolar macrophages, monocytes, and HL-60 cells expressed IL-2R after rIFN-gamma treatment and remained IL-2R+ in the presence of IL-2R or medium alone. By comparison, greater than 95% of cells induced to express IL-2R became IL-2R- after addition of rGM-CSF, and the culture supernatants from GM-CSF-treated cells contained increased levels of PGE. This inhibition of macrophage IL-2R expression by rGM-CSF was blocked by indomethacin, and IL-2R+ macrophages became IL-2R- after addition of PGE2 alone. These findings indicate GM-CSF down-regulates IL-2R expression by human macrophages via induction of PGE synthesis. Moreover, a similar down-regulation of IL-2R expression was seen after stimulation with caffeine, theophylline, or dibutyryl cyclic AMP. Hence, GM-CSF, PGE, and other pharmacologic agents that act to increase intracellular levels of cAMP may play a modulatory role, antagonistic to that of IFN-gamma on cellular expression of IL-2R by human inflammatory macrophages in vivo.  相似文献   

12.
U937, a human macrophage-like cell line, spontaneously produces a factor which inhibited blastogenic responses of human blood T lymphocytes stimulated with tuberculin-purified protein derivative (PPD) or phytohemagglutinin (PHA). We investigated the mechanism of suppressor action of the U937 factor. The U937 suppressor factor inhibited interleukin 2 (IL 2) production by human blood T lymphocytes stimulated with PPD or PHA. IL 1 did not overcome the inhibitory action of the U937 factor on PPD-induced IL 2 production by human blood T lymphocytes. The U937 factor also inhibited the production of IL 2 by a human leukemic cell line, JURKAT, stimulated with PHA. The U937 suppressor factor interfered with the expression of Tac antigen (IL 2 receptor) on PPD- or PHA-stimulated blood T lymphocytes. The inhibitory activity of the U937 factor on Tac expression was not affected by the addition of IL 2 or a crude lymphokine-containing T cell supernatant. Tac expression was more sensitive than IL 2 production to inhibition by U937-conditioned medium. The U937 suppressor factor was precipitable by 33 to 67% saturated ammonium sulfate and was inactivated at pH 2 or pH 11. Sephacryl S-200 Gel filtration analysis of U937 culture supernatants revealed that the inhibitory activities for blastogenesis, IL 2 production, and Tac expression co-purified in fractions with an apparent m.w. between 67,000 and 130,000. These data indicate that U937 spontaneously produces a macromolecular suppressive factor with major locus of action on the production of IL 2 and the expression of the IL 2 receptor.  相似文献   

13.
Using human blood monocytes (for determination of cyclooxygenase-2 (COX-2) mRNA by RT-PCR) and human whole blood (for prostanoid determination), the present study investigates the influence of the second messenger cAMP on lipopolysaccharide (LPS)-induced COX-2 expression with particular emphasis on the role of prostaglandin E(2) (PGE(2)) in this process. Elevation of intracellular cAMP with a cell-permeable cAMP analogue (dibutyryl cAMP), an adenylyl cyclase activator (cholera toxin), or a phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine) substantially enhanced LPS-induced PGE(2) formation and COX-2 mRNA expression, but did not modify COX-2 enzyme activity. Moreover, up-regulation of LPS-induced COX-2 expression was caused by PGE(2), butaprost (selective agonist of the adenylyl cyclase-coupled EP(2) receptor) and 11-deoxy PGE(1) (EP(2)/EP(4) agonist), whereas sulprostone (EP(3)/EP(1) agonist) left COX-2 expression unaltered. Abrogation of LPS-induced PGE(2) synthesis with the selective COX-2 inhibitor NS-398 caused a decrease in COX-2 mRNA levels that was restored by exogenous PGE(2) and mimicked by S(+)-flurbiprofen and ketoprofen. Overall, these results indicate a modulatory role of cAMP in the regulation of COX-2 expression. PGE(2), a cAMP-elevating final product of the COX-2 pathway, may autoregulate COX-2 expression in human monocytes via a positive feedback mechanism.  相似文献   

14.
When murine peritoneal macrophages were stimulated for 30 min with arachidonic acid, the growth-associated immediate early gene c-fos was induced in a concentration-dependent manner as assessed by Northern blot analysis. The arachidonic acid-induced c-fos mRNA expression was inhibited by a cyclooxygenase inhibitor, indomethacin, but not by a lipoxygenase inhibitor, nordihydroguaiaretic acid. Macrophages produced prostaglandin (PG) E(2) from arachidonic acid as determined by an enzyme immunoassay. Northern blot analysis revealed the expression of PGE receptor EP2 and EP4 subtypes, but not EP1 and EP3 in murine macrophages. PGE(2) brought about a marked elevation of cAMP, and c-fos mRNA expression was increased by PGE(2) and dibutyryl cAMP in these cells. These results suggest that arachidonic acid is transformed to PGE(2), which then binds to EP2 and EP4 receptors to increase intracellular cAMP and c-fos mRNA expression. Furthermore, the induction of c-fos by arachidonic acid, PGE(2), and cAMP was suppressed by pretreatment with interleukin (IL)-4. We also showed that the tyrosine phosphorylation of a Janus kinase, JAK3, is enhanced by IL-4 treatment, suggesting that the PGE(2)-mediated c-fos mRNA induction is inhibited by IL-4 through the tyrosine phosphorylation of JAK3.  相似文献   

15.
The effect of cyclic AMP-elevating agents on mitogen-stimulated IL2 production was examined. Prostaglandin E2 (PGE2) inhibited IL2 production by human peripheral blood T cells stimulated with PHA. In contrast, PGE2 did not inhibit PHA-stimulated IL2 production by the human leukemic T cell line. Jurkat, and often slightly enhanced IL2 production by those cells. Other cyclic adenosine monophosphate (cAMP) elevating agents (forskolin, isoproterenol, and the cAMP analogue, dibutyryl cAMP) also inhibited lectin-stimulated IL2 production by T cells, but could not inhibit IL2 production by Jurkat cells. Of the cAMP-elevating agents examined, only cholera toxin (CT) inhibited IL2 production by both Jurkat cells and peripheral blood T cells. Although phorbol myristate acetate (PMA) greatly enhanced PHA-stimulated IL2 production by Jurkat cells. CT remained markedly inhibitory. The combination of PMA and the calcium ionophore, ionomycin, also induced IL2 production by Jurkat cells, and this was similarly suppressed by CT, suggesting that a step after initial second messenger generation was inhibited. A prolonged increase in intracellular cAMP levels was induced by CT in both T cells and Jurkat cells, but the maximal level and the length of elevation achieved in T cells were much less than those observed in Jurkat cells. In contrast, PGE2 caused only a modest and transient increase in intracellular cAMP levels in Jurkat cells compared to that noted with T cells. PGE2 induced a more marked and sustained increase in cAMP levels in Jurkat cells treated with isobutylmethylxanthine (IBMX), a phosphodiesterase inhibitor. Moreover, in the presence of IBMX, PGE2 caused a marked inhibition of IL2 production by PHA-stimulated Jurkat cells. Differences in the capacity of PGE2 to induce cAMP could not be explained by disparities in the level of cAMP phosphodiesterase activity as this was comparable in Jurkat cells and in T cells. Thus, these observations indicate that IL2 production by both peripheral T cells and Jurkat cells can be modulated by cAMP-elevating agents. The data suggest that the diminished capacity of PGE2 to inhibit IL2 production by Jurkat cells reflects both a diminished capacity of PGE2 to induce increases in cAMP levels in these cells and an increase in the threshold of cAMP required to inhibit Jurkat cells.  相似文献   

16.
The actions of prostaglandins (PG) on cAMP in dispersed chief cells from guinea pig stomach were examined and compared to the actions of these agents on pepsinogen secretion. Maximal concentrations of A, B, or E prostaglandins caused a 2-5-fold increase in pepsinogen secretion and cellular cAMP. The relative order of potency for these actions was PGEs greater than PGAs greater than PGBs. Detection of prostaglandin-induced changes in cAMP was enhanced by adding a phosphodiesterase inhibitor to the incubation solution. The time courses for the effects of prostaglandins on pepsinogen secretion and cAMP were similar. With PGE1 an increase in cAMP and pepsinogen secretion was detected by 1 min and was maximal by 7.5 min. Although significant increases in cAMP were detected with a ten-fold lower concentration of PGEs than PGAs, a maximal increase in cAMP was observed with the same concentration, 30 microM, of either agent. These data indicate that prostaglandins that stimulate pepsinogen secretion increase cAMP in dispersed chief cells. However, comparison of the dose-response curves for the actions of prostaglandins on pepsinogen secretion and cAMP revealed that detectable increases in cAMP occurred with concentrations of these agents that were about ten-fold greater than those needed to stimulate pepsinogen secretion. Therefore, although the similarity in the kinetics and relative potencies of prostaglandin-induced changes in cAMP and enzyme secretion provides further evidence that changes in cAMP play a role in the mediation of prostaglandin-induced pepsinogen secretion, the present data suggest the involvement of a cellular messenger in addition to cAMP.  相似文献   

17.
Mononuclear phagocytes regulate the generation of plasmin by secreting urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-2 (PAI-2). We investigated the production of plasminogen activator (PA) and PA inhibitor by the human monocytic leukemia cell line, THP-1. Similar to U937 monoblast-like cells and peripheral blood monocytes (PBM), THP-1 cells produce a PA that is specifically neutralized by anti-uPA antibody and comigrates with human high molecular mass uPA (54 kDa) on casein-plasminogen zymogaphy. PA activity could be dissociated from intact THP-1 cells by brief treatment with a weak acid-glycine buffer, indicating that the uPA is secreted and bound to receptors on the plasma membrane. Regulation of uPA proceeds normally in THP-1 cells, with cell-associated PA activity increasing from 77 +/- 20 to 163 +/- 26 and 325 +/- 30 mPU/10(6) cells in response to PMA and LPS, respectively; parallel increases in steady state levels of uPA mRNA were observed. In contrast to normal expression of uPA activity, functional PAI-2 could not be demonstrated in either the conditioned media or cell lysates of THP-1 under basal or stimulated conditions. Both U937 and PBM secrete low levels of PA inhibitor activity that increase substantially in response to stimulation with PMA and LPS. Immunoreactive PAI-2, measured by ELISA, was undetectable in THP-1 lysates or conditioned medium, but was consistently present in U937 and PBM, paralleling the presence of PA inhibitor activity. THP-1 cells express low levels of an abnormally sized mRNA for PAI-2 and demonstrate a regulatory defect whereby steady state levels of PAI-2 mRNA are markedly reduced upon stimulation with PMA or LPS. By contrast, U937 and PBM respond to identical stimulation with increases in PAI-2 mRNA. We conclude that THP-1 cells express a structurally abnormal species of PAI-2 mRNA, with complete loss of inhibitory activity as well as altered function of PMA- and LPS-responsive regulatory elements.  相似文献   

18.
19.
C Gespach  H Cost  J P Abita 《FEBS letters》1985,184(2):207-213
Histamine H2 receptor activity (cAMP generation) has been characterized in U-937 cells before and after retinoic acid-induced differentiation into monocyte-/macrophage-like cells. The differentiation is associated with a decreased capacity of U-937 monocytes to generate cAMP under basal conditions or after cell surface receptor stimulation by histamine, isoproterenol and PGE1. In contrast, the potencies of the hormones are unchanged during monocytic maturation (EC50 values = 3.2-4.6 X 10(-6) M histamine, 4.6-7 X 10(-9) M isoproterenol, 2-4.6 X 10(-6) M PGE1). The data support the view that histamine and cAMP-inducing agents may control the proliferation and differentiation of normal and leukemic cells committed to monocytic maturation in man. They also raise the possibility that normal human monocytes also possess functional H2 receptors and that histamine may be implicated in the regulation of monocyte/macrophage functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号