首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  相似文献   

2.
3.
The polyketide metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) is produced by many strains of fluorescent Pseudomonas spp. with biocontrol activity against soilborne fungal plant pathogens. Genes required for 2,4-DAPG synthesis by P. fluorescens Q2-87 are encoded by a 6.5-kb fragment of genomic DNA that can transfer production of 2,4-DAPG to 2,4-DAPG-nonproducing recipient Pseudomonas strains. In this study the nucleotide sequence was determined for the 6.5-kb fragment and flanking regions of genomic DNA from strain Q2-87. Six open reading frames were identified, four of which (phlACBD) comprise an operon that includes a set of three genes (phlACB) conserved between eubacteria and archaebacteria and a gene (phlD) encoding a polyketide synthase with homology to chalcone and stilbene synthases from plants. The biosynthetic operon is flanked on either side by phlE and phlF, which code respectively for putative efflux and regulatory (repressor) proteins. Expression in Escherichia coli of phlA, phlC, phlB, and phlD, individually or in combination, identified a novel polyketide biosynthetic pathway in which PhlD is responsible for the production of monoacetylphloroglucinol (MAPG). PhlA, PhlC, and PhlB are necessary to convert MAPG to 2,4-DAPG, and they also may function in the synthesis of MAPG.  相似文献   

4.
The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a function to PhlG as a hydrolase specifically degrades DAPG to equimolar amounts of mildly toxic monoacetylphloroglucinol (MAPG) and acetate. DAPG added to cultures of a DAPG-negative DeltaphlA mutant of strain CHA0 was completely degraded, and MAPG was temporarily accumulated. In contrast, DAPG was not degraded in cultures of a DeltaphlA DeltaphlG double mutant. To confirm the enzymatic nature of PhlG in vitro, the protein was histidine tagged, overexpressed in Escherichia coli, and purified by affinity chromatography. Purified PhlG had a molecular mass of about 40 kDa and catalyzed the degradation of DAPG to MAPG. The enzyme had a kcat of 33 s(-1) and a Km of 140 microM at 30 degrees C and pH 7. The PhlG enzyme did not degrade other compounds with structures similar to DAPG, such as MAPG and triacetylphloroglucinol, suggesting strict substrate specificity. Interestingly, PhlG activity was strongly reduced by pyoluteorin, a further antifungal compound produced by the bacterium. Expression of phlG was not influenced by the substrate DAPG or the degradation product MAPG but was subject to positive control by the GacS/GacA two-component system and to negative control by the pathway-specific regulators PhlF and PhlH.  相似文献   

5.
Delany  I.R.  Walsh  U.F.  Ross  I.  Fenton  A.M.  Corkery  D.M.  O'Gara  F. 《Plant and Soil》2001,232(1-2):195-205
Pseudomonas fluorescens F113 is an effective biocontrol agent against Pythium ultimum, the causative agent of damping-off of sugarbeet seedlings. Biocontrol is mediated via the production of the anti-fungal metabolite 2,4-diacetylphloroglucinol (Phl). A genetic approach was used to further enhance the biocontrol ability of F113. Two genetically modified (GM) strains, P. fluorescens F113Rif (pCU8.3) and P. fluorescens F113Rif (pCUP9), were developed for enhanced Phl production and assessed for biocontrol efficacy and impact on sugarbeet in microcosm experiments. The multicopy plasmid pCU8.3 contains the biosynthetic genes (phlA, C, B and D) and the putative permease gene (phlE) of F113 cloned into the rhizosphere stable plasmid pME6010, independent of external promoters. The plasmid pCUP9 consists of the Phl biosynthetic genes cloned downstream of the constitutive Plac promoter in pBBR1MCS. Introduction of pCU8.3 and pCUP9 into P. fluorescens F113 significantly altered the kinetics of Phl biosynthesis when grown in SA medium. A significant and substantial increase in Phl production by the GM strains was observed in the early logarithmic phase and stationary phase of growth compared with the wild-type strain. In microcosm, the two Phl overproducing strains proved to be as effective at controlling damping-off disease as the proprietary fungicide treatment, indicating the potential of genetic modification for plant disease control.  相似文献   

6.
Fluorescent Pseudomonas species are an important group of PGPR that suppress fungal root and seedling disease by production of antifungal metabolites such as 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin, pyrolinitrin, siderophores and HCN. The compound 2,4-DAPG is a major determinant in biocontrol of plant pathogens. A 7.2 kbp chromosomal DNA region, carrying DAPG biosynthetic genes (phlA, phlC, phlB, phlD, phIE and phlF). Detecting the ph1 genes make them an ideal marker gene for 2,4-DAPG-producing fluorescent pseudomonad's. In this study we detected ph1A gene (that convert MAPG to 2,4-DAPG) using PCR assay with primers phlA-1r and phlA- f that enabled amplification of phlA sequences from fluorescent pseudomonad's from ARDRA group 1 and 3. We could detect phlA gene in P. fluorescens strains CHAO, Pf-44, Pf-1, Pf-2, Pf-3, Pf-17, Pf-62 and Pf-64, native isolates of Iran. The efficacy of this method for rapid assay characterizing rhizosphere population of 2,4-DAPG producing bacteria from soil of different area of Iran is in progress. We used a collection of 48 fluorescent pseudomonas strains in vitro, with known biological control activity against some soil born phytopathogenic fungi such as, Macrophomina phaseoli, Rhizoctonia solani Vericillium dahlia, Phytophthora nicotiana, Pythium spp. and Fusarium spp. and the potential to produce known secondary metabolites such as protease. Strains Pf-1, Pf-2, Pf-3, Pf-17, Pf-33 and Pf-44 showed the best antifungal activity against all fungi used in this study. Thirty-eight of 48 strains produced protease. The ability to rapidly characterize populations of 2,4-DAPG producers will greatly enhance our understanding of their role in the suppression of root disease.  相似文献   

7.
The performance of Pseudomonas biocontrol agents may be improved by applying mixtures of strains which are complementary in their capacity to suppress plant diseases. Here, we have chosen the combination of Pseudomonas fluorescens CHA0 with another well-characterized biocontrol agent, P. fluorescens Q2-87, as a model to study how these strains affect each other's expression of a biocontrol trait. In both strains, production of the antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a crucial factor contributing to the suppression of root diseases. DAPG acts as a signaling compound inducing the expression of its own biosynthetic genes. Experimental setups were developed to investigate whether, when combining strains CHA0 and Q2-87, DAPG excreted by one strain may influence expression of DAPG-biosynthetic genes in the other strain in vitro and on the roots of wheat. DAPG production was monitored by observing the expression of lacZ fused to the biosynthetic gene phlA of the respective strain. Dual-culture assays in which the two strains were grown in liquid medium physically separated by a membrane revealed that Q2-87 but not its DAPG-negative mutant Q2-87::Tn5-1 strongly induced phlA expression in a DeltaphlA mutant of strain CHA0. In the same way, phlA expression in a Q2-87 background was induced by DAPG produced by CHA0. When coinoculated onto the roots of wheat seedlings grown under gnotobiotic conditions, strains Q2-87 and CHA0, but not their respective DAPG-negative mutants, were able to enhance phlA expression in each other. In summary, we have established that two nonrelated pseudomonads may stimulate each other in the expression of an antimicrobial compound important for biocontrol. This interpopulation communication occurs in the rhizosphere, i.e., at the site of pathogen inhibition, and is mediated by the antimicrobial compound itself acting as a signal exchanged between the two pseudomonads.  相似文献   

8.
9.
Plant health and fitness widely depend on interactions with soil microorganisms. Some bacteria such as pseudomonads can inhibit pathogens by producing antibiotics, and controlling these bacteria could help improve plant fitness. In the present study, we tested whether plants induce changes in the antifungal activity of root-associated bacteria as a response to root pathogens. We grew barley plants in a split-root system with one side of the root system challenged by the pathogen Pythium ultimum and the other side inoculated with the biocontrol strain Pseudomonas fluorescens CHA0. We used reporter genes to follow the expression of ribosomal RNA indicative of the metabolic state and of the gene phlA, required for production of 2,4-diacetylphloroglucinol, a key component of antifungal activity. Infection increased the expression of the antifungal gene phlA. No contact with the pathogen was required, indicating that barley influenced gene expression by the bacteria in a systemic way. This effect relied on increased exudation of diffusible molecules increasing phlA expression, suggesting that communication with rhizosphere bacteria is part of the pathogen response of plants. Tripartite interactions among plants, pathogens, and bacteria appear as a novel determinant of plant response to root pathogens.  相似文献   

10.
11.
12.
Pseudomonas fluorescens F113 produces antifungal metabolites that protect the roots of sugarbeet from the fungus Pythium ultimum . The phytopathogen, in turn, has the ability to downregulate the expression of genes fundamental to the rhizosphere competence of the bacterial strain. This paper describes the characterization of two of these genes, which were isolated by screening a mini-Tn 5  :: lacZ mutant bank for differential expression of β-galactosidase in the presence of P. ultimum . In order to identify the genes affected in reporter mutants SF3 and SF5, the transposons and flanking regions were cloned. Sequence analysis of the regions flanking the transposons in SF3 revealed that mini-Tn 5  :: lacZ had inserted into a tRNAIle gene, which maps within a ribosomal RNA ( rrn ) operon. In SF5, the transposon inserted between the promoter of a second rrn operon and a gene encoding a 16S rRNA. Southern blot analysis demonstrated that there are five rrn operons in P. fluorescens F113 and that the transposons in SF3 and SF5 had inserted into two different operons. Further characterization of these mutants suggests that their reduced rhizosphere competence is not the result of reduced viability in the short term but may be accounted for partly by reduced growth rates under conditions that support rapid growth. Analysis of lacZ expression in the reporter mutants indicate that the marked rrn operons are regulated differently, suggesting different physiological roles.  相似文献   

13.
14.
The ability of Pseudomonas fluorescens F113 to produce the antibiotic 2,4-diacetylphloroglucinol (DAPG) is a key factor in the biocontrol of the phytopathogenic fungus Pythium ultimum by this strain. In this study, a DAPG-producing strain (rifampin-resistant mutant F113Rif) was compared with a nearly isogenic DAPG-negative biosynthesis mutant (Tn5::lacZY derivative F113G22) in terms of the ability to colonize and persist in the rhizosphere of sugarbeets in soil microcosms during 10 plant growth-harvest cycles totaling 270 days. Both strains persisted similarly in the rhizosphere for 27 days, regardless of whether they had been inoculated singly onto seeds or coinoculated in a 1:1 ratio. In order to simulate harvest and resowing, the roots were removed from the soil and the pots were resown with uninoculated sugarbeet seeds for nine successive 27-day growth-harvest cycles. Strains F113Rif and F113G22 performed similarly with respect to colonizing the rhizosphere of sugarbeet, even after nine cycles without reinoculation. The introduced strains had a transient effect on the size of the total culturable aerobic bacterial population. The results indicate that under these experimental conditions, the inability to produce DAPG did not reduce the ecological fitness of strain F113 in the rhizosphere of sugarbeets.  相似文献   

15.
16.
A field trial was previously conducted in which sugarbeet seeds were either untreated, inoculated with the biocontrol strain Pseudomonas fluorescens F113Rif, or treated with chemical fungicides. Following harvest of sugarbeet, the field site was sown with uninoculated red clover. The aim of this study was to assess the residual impact of the microbial inoculant (and the fungicide treatment) on the diversity of resident rhizobia nodulating the red clover rotation crop. The percentage of nodules yielding rhizobial isolates after surface disinfection was 67% in the control and 70% in the P. fluorescens F113Rif treatment, but only 23% in the chemical treatment. Isolates were characterized by RAPD analysis. The main RAPD cluster (arbitrarily defined at 70% similarity) was prevalent in all three treatments. In addition, the distribution of RAPD clusters followed a log series model, regardless of the treatment applied, indicating that neither the microbial inoculant nor the fungicide treatment had caused a strong perturbation of the rhizobial population. When the P. fluorescens F113Rif and control treatments were compared using diversity indices, however, it appeared that the genetic diversity of rhizobia was significantly less in the inoculated treatment. The percentage of rhizobia sensitive to 2,4-diacetylphloroglucinol (Phl; the antimicrobial metabolite produced by P. fluorescens F113Rif) fluctuated according to field site heterogeneity, and treatments had no effect on this percentage. Yet, the proportion of Phl-sensitive isolates in the main RAPD cluster was lower in the P. fluorescens F113Rif treatment compared with the control, raising the possibility that the residual impact of the inoculant could have been partly mediated by production of Phl. This impact on the rhizobial population took place without affecting the functioning of the Rhizobium–clover symbiosis.  相似文献   

17.
The potato cyst nematode Globodera rostochiensis is an important pest of potato (Solanum tuberosum). Pseudomonas fluorescens F113, which produces 2,4-diacetylphloroglucinol (DAPG), was investigated as a potential biocontrol agent against G. rostochiensis. Exposure of nematode cysts to the pseudomonad, under in vitro conditions or in soil microcosms, almost doubled the ability of the eggs to hatch. The percentage of mobile juveniles was reduced threefold following their incubation in the presence of the pseudomonad, both in vitro and in soil. Results obtained with a transposon-induced DAPG-negative biosynthetic mutant of F113 and its complemented derivative with restored DAPG synthesis showed that the ability of strain F113 to produce DAPG was responsible for the increase in hatch ability and the reduction in juvenile mobility. Similar effects on egg hatch ability and juvenile mobility of G. rostochiensis were obtained in vitro by incubating nematode cysts and juveniles, respectively, in the presence of synthetic DAPG. DAPG-producing P. fluorescens F113 is proposed as a potential biocontrol inoculant for the protection of potato crops against the potato cyst nematode.  相似文献   

18.
Using undisturbed sandy loam soil cores heavily infested with mycorrhizae, the effects of the antibiotic-producing Pseudomonas fluorescens strain F113 and its non-antibiotic derivative Ps. fluorescens F113G22 on nodulation by introduced and indigenous Rhizobium were studied. Furthermore, the effects of the different microbial inocula on the colonization of the pea roots by mycorrhizae were studied. It was found that Ps. fluorescens F113 enhanced nodulation by Rhizobium fourfold, while the nodules produced were much larger and strongly pigmented (pink) compared with those in other treatments. The proportion of roots colonized by arbuscular mycorrhizae was not significantly affected by the different treatments.  相似文献   

19.
Understanding the environmental factors that regulate the biosynthesis of antimicrobial compounds by disease-suppressive strains of Pseudomonas fluorescens is an essential step toward improving the level and reliability of their biocontrol activity. We used liquid culture assays to identify several minerals and carbon sources which had a differential influence on the production of the antibiotics 2,4-diacetylphloroglucinol (PHL), pyoluteorin (PLT), and pyrrolnitrin and the siderophores salicylic acid and pyochelin by the model strain CHA0, which was isolated from a natural disease-suppressive soil in Switzerland. Production of PHL was stimulated by Zn2+, NH4Mo2+, and glucose; the precursor compound mono-acetylphloroglucinol was stimulated by the same factors as PHL. Production of PLT was stimulated by Zn2+, Co2+, and glycerol but was repressed by glucose. Pyrrolnitrin production was increased by fructose, mannitol, and a mixture of Zn2+ and NH4Mo2+. Pyochelin production was increased by Co2+, fructose, mannitol, and glucose. Interestingly, production of its precursor salicylic acid was increased by different factors, i.e., NH4Mo2+, glycerol, and glucose. The mixture of Zn2+ and NH4Mo2+ with fructose, mannitol, or glycerol further enhanced the production of PHL and PLT compared with either the minerals or the carbon sources used alone, but it did not improve siderophore production. Extending fermentation time from 2 to 5 days increased the accumulation of PLT, pyrrolnitrin, and pyochelin but not of PHL. When findings with CHA0 were extended to an ecologically and genetically diverse collection of 41 P. fluorescens biocontrol strains, the effect of certain factors was strain dependent, while others had a general effect. Stimulation of PHL by Zn2+ and glucose was strain dependent, whereas PLT production by all strains that can produce this compound was stimulated by Zn2+ and transiently repressed by glucose. Inorganic phosphate reduced PHL production by CHA0 and seven other strains tested but to various degrees. Production of PLT but not pyrrolnitrin by CHA0 was also reduced by 100 mM phosphate. The use of 1/10-strength nutrient broth-yeast extract, compared with standard nutrient broth-yeast extract, amended with glucose and/or glycerol resulted in dramatically increased accumulations of PHL (but not PLT), pyochelin, and salicylic acid, indicating that the ratio of carbon source to nutrient concentration played a key role in the metabolic flow. The results of this study (i) provide insight into the biosynthetic regulation of antimicrobial compounds, (ii) limit the number of factors for intensive study in situ, and (iii) indicate factors that can be manipulated to improve bacterial inoculants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号