首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the relationship between auditory sensitivity, frequency selectivity, and the vocal repertoire of greater spear-nosed bats (Phyllostomus hastatus). P. hastatus commonly emit three types of vocalizations: group-specific foraging calls that range from 6 to 11 kHz, low amplitude echolocation calls that sweep from 80 to 40 kHz, and infant isolation calls from 15 to 100 kHz. To determine if hearing in P. hastatus is differentially sensitive or selective to frequencies in these calls, we determined absolute thresholds and masked thresholds using an operant conditioning procedure. Both absolute and masked thresholds were lowest at 15 kHz, which corresponds with the peak energy of isolation calls. Auditory and masked thresholds were higher at sound frequencies used for group-specific foraging calls and echolocation calls. Isolation calls meet the requirements of individual signatures and facilitate parent-offspring recognition. Many bat species produce isolation calls with peak energy between 10 and 25 kHz, which corresponds with the frequency region of highest sensitivity in those species for which audiogram data are available. These findings suggest that selection for accurate offspring recognition exerts a strong influence on the sensory system of P. hastatus and likely on other species of group-living bats.  相似文献   

2.
While searching for prey, Molossus molossus broadcasts narrow-band calls of 11.42 ms organized in pairs of pulses that alternate in frequency. The first signal of the pair is at 34.5 kHz, the second at 39.6 kHz. Pairs of calls with changing frequencies were only emitted when the interpulse intervals were below 200 ms. Maximum duty cycles during search phase are close to 20%. Frequency alternation of search calls is interpreted as a mechanism for increasing duty cycle and thus the temporal continuity of scanning, as well as increasing the detection range. A neurophysiological correlate for the processing of search calls was found in the inferior colliculus. 64% of neurons respond to frequencies in the 30- to 40-kHz range and only in this frequency range were closed tuning curves found for levels below 40 dB SPL. In addition, 15% of the neurons have double-tuned frequency-threshold curves with best thresholds at 34 and 39 kHz. Differing from observations in other bats, approach calls of M. molossus are longer and of higher frequencies than search calls. Close to the roost, the call frequency is increased to 45.0–49.8 kHz and, in addition, extremely broadband signals are emitted. This demonstrates high plasticity of call design.Abbreviations BF best frequency - CF constant frequency - IC inferior colliculus - Fmax maximal frequency - Fmin minimal frequency - PF peak frequency - PSTH post-stimulus time histogram - QCF quasi-constant frequency - SPL sound pressure level  相似文献   

3.
Hearing in the FM-bat Phyllostomus discolor: a behavioral audiogram   总被引:3,自引:3,他引:0  
Absolute auditory thresholds of six adult lesser spear-nosed bats Phyllostomus discolor (Chiroptera, Phyllostomidae) were determined in a two-alternative forced-choice procedure. Behavioral responses to pure tone stimuli could be elicited throughout the tested frequency range of 5–142 kHz. The shape of the average audiogram is characterized by two sensitivity peaks and a pronounced increase of thresholds around 55 kHz, and towards the limits of the tested frequency range. The spectral extent of both sensitivity peaks shows a close relation to the bandwidth of two types of species-specific vocalizations. The first low threshold area (> 10 and < 55 kHz) of the audiogram seems perfectly adapted to the directive call used for intraspecific communication, whereas the second sensitivity peak, centered around 85 kHz, covers most of the bandwidth of the species' echolocation calls.Abbreviations CF constant frequency - FM frequency modulation - l left - r right - SPL Sound pressure level  相似文献   

4.
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.  相似文献   

5.
The pipistrelle ( Pipistrellus pipistrellus ) occurs as two phonic types in Britain, its echolocation calls falling into two distinct frequency bands, with mean frequencies of maximum energy at 55 kHz and 46 kHz. These are termed the 55 kHz and 45 kHz phonic types here for simplicity. Songflight calls produced by males in the mating season, probably to attract females, differed between the two phonic types in the number of components in the calls and the call parameters measured. Songflight calls of the 55 kHz phonic type, which generally consisted of three components, were of higher frequencies than those of the 45 kHz phonic type, usually of four components. There were also significant differences in call parameters among individuals. A discriminant analysis of songflight calls classified 100% of individuals to the correct phonic type. The relationships between echolocation call frequency and songflight call frequency differed significantly between phonic types. Social calls produced during flight also differed between phonic types, in the number of components and call parameters measured. Social calls were compared to songflight calls of each phonic type. Social calls of the 55 kHz phonic type did not differ significantly from songflight calls; there were small but significant differences between the two types of calls of the 45 kHz phonic type. The study provides support for the hypothesis that the phonic types should be treated as sibling species. If songflight calls are used for mate choice, the differences may allow reproductive isolation between the two phonic types. The functions of songflight calls and social calls need to be investigated through experimental studies to explain the implications of the differences between phonic types.  相似文献   

6.
False Vampires ( Megaderma lyra ) are gleaning bats which emit brief (1 ms) and faint echolocation signals consisting of four harmonics of a shallow frequency downward modulated fundamental (27–19 kHz). The complete signal spans a frequency range from 100 to 19 kHz. In sound recordings from three experimental animals we show that Megaderma lyra shifts the dominant frequency in the echolocation signals in relation to the type of prey offered and to flight style. During roaming flights the mean peak frequency was 63.2 ± 9 kHz (third harmonic). In prey catching flights, peak frequencies were shifted into the fourth harmonic. In flights towards a dish of crawling mealworms, mean peak frequency was raised to 91.2 ± 3.3 kHz. When the bats flew towards living mice the dominant frequency was further increased to 99.8 ± 5.2 kHz, and the second and third harmonic were at least 10 dB fainter or no longer recordable. The additional frequency shift when flying towards mice was not only a consequence of the dominance of the fourth harmonic but also of an additional rise of the fundamental harmonic by nearly 2 kHz. These prey-correlated frequency shifts in echolocation calls showed little variation between the three experimental animals and were reproducible over time. They occurred at or even before take-off of the bats. This is the first report of target-correlated transient adaptations in echolocation calls of any bat species.  相似文献   

7.
1.  Most studies examining interactions between insectivorous bats and tympanate prey use the echolocation calls of aerially-feeding bats in their analyses. We examined the auditory responses of noctuid (Eurois astricta) and notodontid (Pheosia rimosa) moth to the echolocation call characteristics of a gleaning insectivorous bat, Myotis evotis.
2.  While gleaning, M. Evotis used short duration (mean ± SD = 0.66 ± 0.28 ms, Table 2), high frequency, FM calls (FM sweep = 80 – 37 kHz) of relatively low intensity (77.3 + 2.9, –4.2 dB SPL). Call peak frequency was 52.2 kHz with most of the energy above 50 kHz (Fig. 1).
3.  Echolocation was not required for prey detection or capture as calls were emitted during only 50% of hovers and 59% of attacks. When echolocation was used, bats ceased calling 324.7 (±200.4) ms before attacking (Fig. 2), probably using prey-generated sounds to locate fluttering moths. Mean call repetition rate during gleaning attacks was 21.7 (±15.5) calls/s and feeding buzzes were never recorded.
4.  Eurois astricta and P. rimosa are typical of most tympanate moths having ears with BFs between 20 and 40 kHz (Fig. 3); apparently tuned to the echolocation calls of aerially-feeding bats. The ears of both species respond poorly to the high frequency, short duration, faint stimuli representing the echolocation calls of gleaning M. evotis (Figs. 4–6).
5.  Our results demonstrate that tympanate moths, and potentially other nocturnal insects, are unable to detect the echolocation calls typical of gleaning bats and thus are particularly susceptible to predation.
  相似文献   

8.
1. The development of vocalization and hearing was studied in Sri Lankan horseshoe bats (Rhinolophus rouxi) during the first postnatal month. The young bats were caught in a nursing colony of rhinolophids in which birth took place within a two week period. 2. The new-born bats emitted isolation calls through the mouth. At the beginning these calls consisted of pure tones with frequencies below 10 kHz (Fig. 1). During the first postnatal week the call frequency increased to about 15 kHz, and the fundamental was augmented by two to four harmonics. No evoked potentials to pure tone stimuli could be elicited in the inferior colliculus of this age group, i.e., auditory processing at the midbrain level was not demonstrable. 3. Evoked potentials were first recorded in the second week, broadly tuned to 15-45 kHz, with a maximum sensitivity between 15-25 kHz. In the course of the second week, however, higher frequencies up to 60 kHz became progressively incorporated into the audiogram (Fig. 3). The fundamental frequency of the multiharmonic isolation calls, emitted strictly through the mouth, increased to about 20 kHz. 4. In the bats' third postnatal week an increased hearing sensitivity (auditory filter) emerged, sharply tuned at frequencies between 57 and 60 kHz (Fig. 4e). The same individuals were also the first to emit long constant frequency echolocation calls through the nostrils (Fig. 4c). The energy of the calls was arranged in harmonic frequency bands with the second harmonic exactly tuned to the auditory filter. These young bats continued to emit isolation calls through the mouth, which were, however, not harmonically related to the echolocation calls (Fig. 4b, d). 5. During the fourth week, both the auditory filter and the matched echolocation pulses (the second harmonic) shifted towards higher frequencies (Fig. 5). During the fifth week the fundamental frequency of the calls was progressively attenuated, and both the second harmonic of the pulses and the auditory filter reached the frequency range typical for adult bats of 73-78 kHz (Fig. 6). 6. The development of audition and vocalization is discussed with regard to possible interactions of both subsystems, and their incorporation into the active orientation system of echolocation.  相似文献   

9.
Recent reports of the use of ultrasound for communication by nocturnal mammals have expanded our understanding of behaviour in these animals. The vocal repertoire of colugos has so far only been known to include audible sound. Here, we report the use of ultrasound calls by Sunda colugos (Galeopterus variegatus, order Dermoptera). We recorded one type of call emitted by seven individuals with mean individual frequencies between 37.4 ± 0.6 and 39.2 ± 0.7 kHz during its maximum energy and lasting 28.7 ± 1.6 to 46.9 ± 21.1 ms. Each call showed 3–36 sequential pulses with individual mean interpulse intervals between 423.0 ± 101.4 and 1230.0 ± 315.4 ms. High frequency calls may serve as cryptic anti-predator alarm calls. Our observations suggest that more species of nocturnal mammals may use ultrasound to communicate, and that further studies are needed to determine the occurrence, function and diversity of these calls.  相似文献   

10.
ABSTRACT

The mating calls of the Iberian midwife toads, A.o. boscai and A. cisternasii show clear differences. The calls of A.o. boscai have a shorter duration (104.8ms) and a lower fundamental frequency (1.33 kHz) than those of A. cisternasii (172.0 ms and 1.45 kHz), between 12° and 16°C. In both species signal duration was found to be influenced by temperature.  相似文献   

11.
The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a ‘monotonous’ sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 kHz (high-note call). The frequencies of these low–high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive relationships between (1) call intensity and call duration and (2) call intensity and distance from clutter. However, these relationships were weaker than those reported for bats from other families. We speculate on how call frequency alternation and an offbeat emission rhythm might reflect a novel strategy for prey detection at the edge of complex habitat in this ancient family of bats.  相似文献   

12.
Between the mean daily density of 28 kHz atmospherics and the onset of epileptic fits there is a highly significant correlation coefficient (r) of 0.30; there is a negative coefficient of –0.20 between the fits and the mean daily density of 10 kHz atmospherics. The onset of heart infarction is correlated with 28 kHz atmospherics (r=0.15). Furthermore, we have discovered that sudden deafness is also correlated with certain configurations of atmospherics. In this paper we report the following correlation coefficients between the inflammatory reaction of rats to a carrageenan injection (rci) into a hind paw and the mean daily pulse rate of atmospherics of the same day:r=0.49 for the 8 kHz atmospherics (P<0.02) andr=0.44 for the 10 kHz atmospherics (P<0.04). The correlations between rci reaction and other atmospherics (12 and 28 kHz) are smaller and not significant. By the method of multiple linear regression we found a multipleR=0.54 between rci reaction and the 8 and 10 kHz atmospherics (the regression function for the rci reaction is 0.15+0.004×8 kHz+0.002×10 kHz,P<0.05).  相似文献   

13.
14.
In captive adult Zambian mole-rats 14 different sounds (13 true vocalizations) have been recorded during different behavioural contexts. The sound analysis revealed that all sounds occurred in a low and middle frequency range with main energy below 10 kHz. The majority of calls contained components of 1.6–2 kHz, 0.63–0.8 kHz, and/or 5–6.3 kHz. The vocalization range thus matched well the hearing range as established in other studies. The frequency content of courtship calls in two species of Zambian Cryptomys was compared with that in naked mole-rats (Heterocephalus glaber) and blind mole-rats (Spalax ehrenbergi) as described in the literature. The frequency range of maximum sound energy is negatively correlated with the body weight and coincides with the frequencies of best hearing in the respective species. In general, the vocalization range in subterranean mammals is shifted towards low frequencies which are best propagated in underground burrows. Accepted: 16 September 1996  相似文献   

15.
Advertisement calls of green treefrogs (Hyla cinerea) have two spectral peaks centered at about 1 kHz and 3 kHz. Addition of a component of intermediate frequency (1.8 kHz) to a synthetic call reduced its attractiveness to females relative to an alternative lacking this component. This mid-frequency suppression occurred over a 20-dB range of playback levels. Addition of other intermediate frequencies had weak effects on preferences at some playback levels, in some localities, and at lower-than-normal temperatures. These effects correlate well with the response properties of a population of low-frequency-tuned auditory neurons innervating the amphibian papilla. Males of a closely related species (H. gratiosa) produce calls with emphasized frequencies within the range of suppression in H. cinerea; however, suppression also occurred in localities well outside the area of geographical overlap with this species. Thus, previous speculation that mid-frequency suppression evolved to enhance species discrimination is probably incorrect. This phenomenon is more likely to reflect a general sensory bias in anurans and other vertebrates, tone-on-tone inhibition. Such negative biases, and other inhibitory mechanisms, almost certainly play an important role in the evolution of communication systems but have received far less attention than positive biases that enhance signal attractiveness.  相似文献   

16.
南蝠回声定位叫声的分析   总被引:11,自引:1,他引:10  
蝙蝠科是翼手目中种类最繁多、分布最广泛、进化最成功的科之一 ,全球共有 42属 35 5种(Nowak ,1991)。该类群的大多数物种都以超声波回声定位来进行捕食 ,其回声定位行为的多样性以及捕食策略的多样性 ,一直都是动物生态学中的研究热点。南蝠 (Iaio)属蝙蝠科南蝠属 ,为单型种 ,主要分布于我国 (罗蓉等 ,1993)。它是蝙蝠科中体形最大者 ,以前对其生态学方面的研究非常少 ,而对其回声定位的研究则未见报道。南蝠捕食时的叫声与飞行及悬挂状态下的叫声的基本特征一致 (声谱图及谐波等 ) ,仅在叫声次数上有一定差异。因此本文将录制南…  相似文献   

17.
Size, peripheral auditory tuning and target strength in noctuid moths   总被引:1,自引:0,他引:1  
We investigated relationships among body size, the frequency of peak auditory sensitivity (best frequency) and acoustic conspicuousness (measured as target strength) to simulated bat echolocation calls in a range of tympanate moths (Lepidoptera: Noctuidae). Audiograms of Amphipyra pyramidea Linnaeus, Agrotis exclamationis Linnaeus, Omphaloscelis lunosa Haworth and Xestia xanthographa Denis and Schiffermüller are described for the first time. Best frequency was inversely related to forewing length, an index of body size. Models predict that target strength falls off rapidly once wavelength (1/frequency) exceeds some defined feature of target size (e.g. circumference for spheres). We investigated how target strength varies in relation to target size and emitted frequency for simple targets (paper discs) and for moths. Target strength fell rapidly when target radius/wavelength < 2 for paper discs of similar size to many noctuid moths. Target strength fell rapidly below wing‐length/wavelength ratios of 2 in relatively small (O. lunosa, wing‐length = 15.2 ± 0.4 mm, best frequency = 45 kHz) and large (N. pronuba, wing‐length = 24.6 ± 0.8 mm, best frequency = 15 kHz) noctuid species, and decreased rapidly at frequencies below 25 kHz in both species. These target strengths were used to predict the detection distance of the moths by bat sonar between 10 and 55 kHz. Predicted detection distances of both species were maximal for fictive call frequencies of 20 kHz, and were reduced at lower frequencies due to decreased target strength and at higher frequencies by excess atmospheric attenuation. Both relatively large and small noctuid moths are therefore strong acoustic targets to bats that echolocate at relatively low frequencies. Bats may emit allotonic calls at low frequency because the costs of reduced detection range are smaller than the benefits of reduced audibility to moths. Because best frequency scales with body size and maximum detection distance is not very sensitive to body size, noctuid moths in the size range examined do not necessarily have best frequencies that would match the call frequencies of bats that may detect the moths at greatest distance precisely. Hence, best frequency may be constrained in part by body size.  相似文献   

18.
In the present paper we study the pattern of variation in call intensity in a natural population of the European green toad (Bufo viridis), and we analyse females preferences for this property by means of playback experiments. Although call sound pressure level (SPL) shows little within‐bout variation, we found significant positive correlation between call SPL and fundamental frequency: on average, an increase of 6 dB SPL produces a 100‐Hz increase in fundamental frequency. When females were given a choice between two calls differing by 10 and 6 dB SPL, they significantly preferred the loudest call, whereas they did not discriminate between calls differing by 3 dB. To test whether a 3‐dB difference reflects a sensory or behavioural limit, we carried out three experiments where females were given a choice between two calls differing in both duration (4 s and 6 s, respectively) and SPL (3 dB). In all three experiments, the longer call attracted a larger number of females, but the 3‐dB difference did not show any significant effect. Finally, we investigated the relationships between call intensity and frequency on female preferences. Previous experiments showed size‐dependent preferences for calls with lower‐than‐average frequencies (1.3 kHz) over calls with higher‐than‐average frequencies (1.6 kHz). Here, we show that this weak preference is abruptly reversed when the highest‐pitched call is broadcast at an intensity 6 dB higher than the alternative.  相似文献   

19.
Advertisement calls, auditory tuning, and larynx and ear morphology were examined in 3 neotropical frogs, Hyla microcephala, H. phlebodes and H. ebraccata, H. microcephala has the highest call dominant frequency (6.068 kHz) and basilar papilla tuning (5.36 kHz). H. phlebodes and H. ebraccata calls have lower dominant frequencies (3.832 and 3.197 kHz respectively) and basilar papilla tuning (2.79 and 2.56 kHz). The primary call notes of H. ebraccata are longer (181.6 ms) than those of H. microcephala (95.5 ms) or H. phlebodes (87.3 ms). Morphometric analysis suggests that temporal call features differ as laryngeal musculature changes, in the process changing the overall size of the larynx. The spectral aspects of the call differ as head size, and hence the size of its resonating and radiating structures, changes, modifying the dominant frequency of calls by accentuating their higher harmonics when head size decreases. Decreasing head size decreases the size of the middle and inner ear chambers, changing the mechanical tuning of the ear in the same direction as the change in dominant frequency. These changes result in divergent spectral-temporal characteristics of both the sending and receiving portions of the acoustic communication system underlying social behavior in these frogs.Abbreviations AP amphibian papilla - BEF best excitatory frequency - BP basilar papilla - dB SPL decibels sound pressure level re:20 N/m2  相似文献   

20.
Both mammals and birds experience a performance trade-off between producing vocalizations with high bandwidths and at high repetition rate. Echolocating bats drastically increase repetition rate from 2–20 calls s−1 up to about 170 calls s−1 prior to intercepting airborne prey in order to accurately track prey movement. In turn, bandwidth drops to about 10–30 kHz for the calls of this ‘final buzz’. We have now discovered that Southeast Asian rainforest bats (in the vespertilionid subfamilies Kerivoulinae and Murininae) are able to maintain high call bandwidths at very high repetition rates throughout approach to prey. Five species of Kerivoula and Phoniscus produced call bandwidths of between 78 and 170 kHz at repetition rates of 140–200 calls s−1 and two of Murina at 80 calls s−1. The ‘typical’ and distinct drop in call frequency was present in none of the seven species. This stands in striking contrast to our present view of echolocation during approach to prey in insectivorous bats, which was established largely based on European and American members of the same bat family, the Vespertilionidae. Buzz calls of Kerivoula pellucida had mean bandwidths of 170 kHz and attained maximum starting frequencies of 250 kHz which makes them the most broadband and most highly pitched tonal animal vocalization known to date. We suggest that the extreme vocal performance of the Kerivoulinae and Murininae evolved as an adaptation to echolocating and tracking arthropods in the dense rainforest understorey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号