首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Recent shifts in water quality and food web characteristics driven by anthropogenic impacts on the Laurentian Great Lakes warranted an examination of pelagic primary producers as tracers of environmental change. The distributions of the 263 common phytoplankton taxa were related to water quality variables to determine taxon-specific responses that may be useful in indicator models. A detailed checklist of taxa and their environmental optima are provided. Multivariate analyses indicated a strong relationship between total phosphorus (TP) and patterns in the diatom assemblages across the Great Lakes. Of the 118 common diatom taxa, 90 (76%) had a directional response along the TP gradient. We further evaluated a diatom-based transfer function for TP based on the weighted-average abundance of taxa, assuming unimodal distributions along the TP gradient. The r2 between observed and inferred TP in the training dataset was 0.79. Substantial spatial and environmental autocorrelation within the training set of samples justified the need for further model validation. A randomization procedure indicated that the actual transfer function consistently performed better than functions based on reshuffled environmental data. Further, TP was minimally confounded by other environmental variables, as indicated by the relatively large amount of unique variance in the diatoms explained by TP. We demonstrated the effectiveness of the transfer function by hindcasting TP concentrations using fossil diatom assemblages in a Lake Superior sediment core. Passive, multivariate analysis of the fossil samples against the training set indicated that phosphorus was a strong determinant of historical diatom assemblages, verifying that the transfer function was suited to reconstruct past TP in Lake Superior. Collectively, these results showed that phytoplankton coefficients for water quality can be robust indicators of Great Lakes pelagic condition. The diatom-based transfer function can be used in lake management when retrospective data are needed for tracking long-term degradation, remediation and trajectories.  相似文献   

2.
3.
Macroinvertebrates are one of the key components of lake ecosystems and are required to be monitored alongside other biological groups to define ecological status according to European Union legislation. Macroinvertebrate communities are highly variable and complex and respond to a diverse series of environmental conditions. The purpose of this study was to examine the relative importance of environmental variables in explaining macroinvertebrate abundance. A total of 45 sub-alpine lakes were sampled for macroinvertebrates in the shallow sublittoral. Environmental variables were grouped into four types: (1) aquatic physical and chemical parameters, (2) littoral and riparian habitat, (3) lake morphometric parameters and (4) sediment chemical characteristics. Nonparametric multiplicative regression (NPMR) was used to model the abundance of individual macroinvertebrate taxa. Significant models were produced for nine out of the 24 taxa examined. Sediment characteristics were the group most frequently included in models and also the factors to which taxa abundance was the most sensitive. Aquatic physical and chemical variables were the next group most frequently included in models although chlorophyll a was not included in any of the models and total phosphorus in only one. This indicates that many taxa may not show a direct easily interpretable response to eutrophication pressure. Lake morphometric factors were included in several of the models although the sensitivity of macroinvertebrate abundance tended to be lower than for sediment and aquatic physical and chemical factors. Habitat factors were only included in three models although riparian vegetation was found to have a significant influence on the abundance of Ephemera danica indicating that ecotone integrity is likely to play a role in its ecology. Overall, the models tended to be specific for species with limited commonality across taxa. Models produced by NPMR indicate that the response of macroinvertebrates to environmental variables can be successfully described but further research is required focussing in more detail on the response of key taxa to relevant environmental parameters and anthropogenic pressures.  相似文献   

4.
The relationships between 23 scaled chrysophyte taxa (Chrysophyceae and Synurophyceae) and measured limnological variables in 62 Adirondack, New York, drainage lakes were examined by canonical correspondence analysis (CCA). The major proportion of variation in chrysophyte species distributions was strongly related to total monomeric Al (Alm) and Mg concentrations, and their close correlates pH, Na, Ca, and acid-neutralizing capacity (ANC). Total monomeric Al concentrations explain a greater proportion of species variation than pH, suggesting that Alm concentrations may be more important in governing the distribution of chrysophyte taxa in these lakes. Gaussian logit (GL) and linear logit (LL) regressions of the relative percentages of individual chrysophyte taxa to lakewater pH and Alm concentrations and the examination of pH–Alm response surfaces show that many chrysophyte taxa exhibit unique responses to these environmental gradients; taxa can be characterized as alkaline, circumneutral, acidic, and pH indifferent. Within each of these groups, taxa can be characterized further based upon their optima and tolerances to Alm concentrations. Chrysophyte indicator species (i.e. a taxon with a strong statistical relationship to the environmental variable of interest, a well-defined optimum, and a narrow tolerance to the variable of interest) for pH include Mallomonas hindonii, M. crassisquama, M. pseudocoronata, and Synura uvella; M. hindonii, M. crassisquama, M. pseudocoronata, S. petersenii, and S. spinosa are good indicators of Alm concentrations. Highly significant predictive models were developed to infer lakewater pH and Alm concentrations from the relative percentages of chrysophyte scales in the study lakes. Model evaluation was based on their correlation coefficients and the root-mean-squared error of prediction (RMSE) derived from bootstrapping. Weighted averaging regression and calibration with tolerance down-weighting (i.e. weighting taxa inversely to their variance) produced superior results when compared to the computationally and data-demanding maximum likelihood methods and to simple weighted averaging regression and calibration.  相似文献   

5.
Many ecological responses to environmental variables or anthropogenic agents are difficult and expensive to measure. Therefore it is attractive to describe such responses in terms of indicators that are easier to measure. In ecosystem management, indicators can be used to monitor spatial and temporal changes in an environmental feature. The aim of this paper is to show that it is important to take Liebig's law of the minimum into consideration to understand when it is appropriate or inappropriate to use ecological indicators based on abundance. When developing indicators that relate the abundance of an organism to an environmental factor, it is likely that this relationship will be polygonal rather than a simple linear relationship. The upper boundary of the distribution describes how abundance is limited by this factor, while the variation below the upper boundary is explained by situations when factors other than the factor of interest limit abundance. The variation below the upper boundary of the distribution means that the use of indicators to examine spatial patterns in the response of abundance to an environmental factor can be problematic. Thus, while abundance-based indicators can identify sites that are in a good condition, they are less useful to detect those affected by environmental degradation. In contrast, abundance-based ecological indicators may enable temporal monitoring of the impact of environmental factors, as it is expected that limiting factors are less variable in time than in space. In conclusion, when multiple factors are limiting, a significant correlation between an indicator and a variable is not enough to validate the status of a factor as an indicator.  相似文献   

6.
Globally the input of sediment to coastal systems, in particular to estuaries, is predicted to increase due to anthropogenic activities. Sediment mud content is a powerful driver of ecologically important, macrobenthic taxa in estuarine intertidal flats. Accordingly, forecasting species responses to increased sedimentation is fundamental for effective ecosystem management, particularly for productive, geologically young, and sand-dominated estuaries that characterise many countries, including New Zealand (NZ). Modelling studies have highlighted the non-linear, highly variable responses of taxa to mud concentration. However, existing taxon-specific models have not adequately accounted for the full mud gradient, the influence of potentially confounding variables (e.g. organic enrichment, heavy metal concentrations), or regional differences in species responses. Furthermore, such models are often based on qualitative expert consensus of the membership of taxa in ecological groups that characterise their sensitivity to mud content. In this study, data from 25 unmodified to highly disturbed, shallow NZ estuaries, were used to develop an ecologically relevant model to relate the responses of 39 taxa to sediment mud content for use in the intertidal flats of shallow, temperate estuaries. Preliminary analyses indicated that sediment mud content was the dominant driver of macroinvertebrate community composition among sites, total organic carbon was of secondary importance and heavy metals did not explain significant variation in composition. Regression analysis revealed a significant linear relationship between sediment mud and total organic carbon content, which permitted subsequent analyses to be based on mud content alone. Generalised additive models were used to develop taxon-specific models that, according to k-fold cross validation, accurately predicted both probability of presence (up to 79% deviance explained) and maximum density (up to 96% deviance explained) along the sediment mud gradient (0.1–92.3%). Estimates of “optimal mud range” and “distribution mud range” were quantitatively-derived for each taxon and used to categorise taxa into one of five ecological groups (identical to those used in existing biotic indices), based on their individual sensitivities to increasing mud content. By removing expert consensus from the grouping process, the classification methods established herein provide strong support for the use of quantitative indices for the assessment and management of estuarine condition in response to increasing sediment mud content. The findings indicate that NZ estuarine sediments (2–25% mud) support a more diverse and abundant macroinvertebrate assemblage and exhibit low organic enrichment (<1% total organic carbon) compared to estuaries with >25% mud content.  相似文献   

7.
BACKGROUND AND AIMS: Comparative studies of closely related taxa can increase understanding of adaptations and changes in seed dormancy and germination preferences in an evolutionary perspective. For such studies, a method to describe and compare the performance of taxa in a general way is needed. The germination ecology of four Papaver taxa was studied with the aim of describing and comparing their responses to different seasonal temperature regimes. METHODS: Germination of Papaver argemone, P. rhoeas, P. dubium ssp. dubium and P. dubium ssp. lecoqii was investigated in three different artificial climates over 2.5 years. Seeds were collected in southern Sweden, and samples from different populations were used as replicates of taxa. KEY RESULTS: Despite substantial intra-taxa variation, there were clear taxon-specific responses. Most germination occurred in the warmest climate. In general, the warmer the climate the more germination occurred in autumn instead of spring. Papaver argemone, phylogenetically most distant from the other taxa, was, in contrast to the others, restricted to germinating only at lower temperatures. CONCLUSIONS: Seed dormancy and germination may be described by dormancy pattern, germination preferences and dormancy strength. The general dormancy pattern was a common feature for these taxa and therefore probably an evolutionary conservative character. Germination preferences varied between taxa, resulting in different temperature optima and intervals for germination, and dormancy strength was to some extent taxon-specific, but highly variable. The dormancy pattern explained how the taxa can perform as winter annuals in warmer climates, but mainly as summer annuals in colder climates. Hence, there is no need to interpret the within-taxon temporal differences in seedling emergence as local adaptations. In the field, an entire seed cohort will not germinate during a single season. Instead, emergence will be distributed over several seasons, regardless of local climate, weather and soil cultivation methods.  相似文献   

8.
1. Few extensive lotic studies have examined patterns in the biodiversity of non‐biting midges (Diptera: Chironomidae) along major environmental gradients. Our aim was to fill this gap by describing patterns in species diversity, assemblage composition and distributions of midges across a boreal drainage basin. 2. We found that the diversity of midges, as measured by rarefied species richness, Fisher’s α and Pielou’s evenness, responded positively to stream size in regression analysis. By contrast, species density was most strongly correlated to a gradient in suspended solids and phosphorus in stream water, as well as macrophyte cover. Spatial variables were not significantly correlated with species diversity. 3. Midge assemblage composition was best explained by a model incorporating five composite environmental gradients in canonical correspondence analysis. The environmental gradients were stream size, macrophyte cover, alkalinity, nitrogen and suspended solids. Spatial variables did not overcome the effects of environmental gradients on assemblage composition. 4. Cluster analysis divided the 27 study sites into four groups with relatively similar midge assemblages. These groups were statistically significant in multi‐response permutation procedure, and 15 of the 49 midge taxa recorded varied significantly among the groups in indicator value analysis. Discriminant function analysis showed that stream size, macrophyte cover and habitat structure predicted 66.7% of sites into correct groups. 5. The information provided by the present analyses may be of considerable importance in conservation planning at the drainage basin level. The fact that species diversity and assemblage composition varied primarily along the stream size gradient suggests that sites belonging to the different size classes (first to fifth order) are needed to conserve the biodiversity of midges. The other environmental gradients should also be considered in conservation planning, because they explained significant amounts of variability in midge assemblage composition.  相似文献   

9.
Wild pedigrees: the way forward   总被引:2,自引:0,他引:2  
Metrics derived from pedigrees are key to investigating several major issues in evolutionary biology, including the quantitative genetic architecture of traits, inbreeding depression, and the evolution of cooperation and inbreeding avoidance. There is merit in studying these issues in natural populations experiencing spatially and temporally variable environmental conditions, since these analyses may yield different results from laboratory studies and allow us to understand population responses to rapid environmental change. Partial pedigrees are now available for several natural populations which are the subject of long-term individual-based studies, and analyses using these pedigrees are leading to important insights. Accurate pedigree construction supported by molecular genetic data is now feasible across a wide range of taxa, and even where only imprecise pedigrees are available it is possible to estimate the consequences of imprecision for the questions of interest. In outbred diploid populations, the pedigree approach is superior to analyses based on marker-based pairwise estimators of coancestry.  相似文献   

10.
Mycorrhizal fungi have a key role in nitrogen (N) cycling, particularly in boreal and temperate ecosystems. However, the significance of ectomycorrhizal fungal (EMF) diversity for this important ecosystem function is unknown. Here, EMF taxon-specific N uptake was analyzed via 15N isotope enrichment in complex root-associated assemblages and non-mycorrhizal root tips in controlled experiments. Specific 15N enrichment in ectomycorrhizas, which represents the N influx and export, as well as the exchange of 15N with the N pool of the root tip, was dependent on the fungal identity. Light or water deprivation revealed interspecific response diversity for N uptake. Partial taxon-specific N fluxes for ectomycorrhizas were assessed, and the benefits of EMF assemblages for plant N nutrition were estimated. We demonstrated that ectomycorrhizal assemblages provide advantages for inorganic N uptake compared with non-mycorrhizal roots under environmental constraints but not for unstressed plants. These benefits were realized via stress activation of distinct EMF taxa, which suggests significant functional diversity within EMF assemblages. We developed and validated a model that predicts net N flux into the plant based on taxon-specific 15N enrichment in ectomycorrhizal root tips. These results open a new avenue to characterize the functional traits of EMF taxa in complex communities.  相似文献   

11.
Boreal lakes undergo broad-scale environmental change over time, but biodiversity responses to these changes, particularly at macroecological scales, are not well known. We studied long-term trends (1992–2009) of environmental variables and assessed α, β, and γ diversity responses of phytoplankton and littoral invertebrates to these changes. Diversity was assessed based on taxon richness (“richness”) and the exponentiated Shannon entropy (“diversity”). Almost all environmental variables underwent significant monotonic change over time, indicating mainly decreasing acidification, water clarity and nutrient concentrations in the lakes. These variables explained about 54 and 38 % of variance in regression models of invertebrates and phytoplankton, respectively. Despite this, most diversity-related variables fluctuated around a long-term mean. Only α and γ richness and diversity of invertebrates increased monotonically through time, and these patterns correlated significantly with local and regional abundances. Results suggest that biodiversity in boreal lakes is currently stable, with no evidence of regional biotic homogenization or local diversity loss. Results also show that richness trends between phytoplankton and invertebrates were widely uncorrelated, and the same was found for diversity trends. Also, within each taxonomic group, temporal patterns of richness and diversity were largely uncorrelated with each other. From an applied perspective, this suggest that long-term trends of biodiversity in boreal lakes at a macroecological scale cannot be accurately assessed without multiple lines of evidence, i.e. through the use of multiple taxa and diversity-related variables in the analyses.  相似文献   

12.
Spatial heterogeneity of benthic communities has clear implications for estimating lake production, biodiversity as well as identifying representative sites for palaeolimnological studies. This study investigates chironomid variability and the controlling factors (i.e., environmental and spatial variables) in surface sediments from Taihu Lake (2,338 km2), a hypertrophic lake in the Yangtze delta in eastern China. The spatial distribution of chironomids shows distinct heterogeneity. Microchironomus tabarui-type and Tanypus dominate the midge communities around the estuaries, while Cricotopus sylvestris-type and Polypedilum nubifer-type are the predominant taxa in the East Bays and the East Taihu Lake. Redundancy analysis was used for exploring the relationships between chironomid variability and environmental and spatial stressors. Four variables were identified as significant factors that influence chironomid community structures. The high nutrient concentrations around the estuarial areas favor the development of nutrient-tolerant taxa. Water depth-related oxygen depletion in the open lake during algae blooms prohibits the survival of many organisms, except for a few hypoxic-resistant species. High transparency in the East Bays and the East Taihu Lake indirectly creates a favorite microhabitat for macrophyte-associated chironomid species through aquatic plants. Space per se is a significant forcing factor for organism community and distribution at scales of >1,000 km2. It might be important to consider spatial variables more explicitly in future studies of chironomids in large lakes where multiple stressors make the interactions within the ecosystem more complicated. This study aims to illustrate the ecological characteristics of specific chironomid taxa related to a “microecosystem” which is contributed by the multiple environmental gradients within a large lake, and to provide empirical support for interpretation of palaeochironomid data.  相似文献   

13.
《农业工程》2022,42(4):322-331
The Pteridophytes represent a great but poorly explored potential as an ecological indicators. Ecological indicator is a useful tool to link empirical results, models and theories with environmental applications. Habitat diversity, precipitation, moisture and rainfall have a high influence on species richness with altitudinal gradients. From 15 different habitats 45 species belonged to 25 genera and 13 families were documented. The leading family were Pteridaceae with 14 taxa, Dryopteridaceae were the second largest family with 7 taxa, followed by Thylepteridaceae with 6 taxa and Aspleniaceae with 5 taxa. Adiantum capillus-veneris and Diplazium esculentum survive in a wide range of habitats while Pellaea calomelanos have a narrow range of habitat. Five plant associations were sorted out through cluster analysis and two ways indicator species analysis. In Bray Curtis ordination the maximum Regression coefficient were recorded for axis 1 (?10.66) with a variance of 0.61. The response data were compositional and have a gradient of 3.2 SD units long. In DCA ordination maximum Eigenvalue and gradient length were recorded for axis 1. Species grouped on the basis of habitat types and habitats having common species. CCA ordination showed that the plants have a linear relationship with environmental variables. The permutation test results on all axis were pseudo-F = 2.4, P = 0.002 indicating the significance value. CCA ordination showed that the environmental variables had a great impact on the association and distribution of majority of the species.  相似文献   

14.
《水生昆虫》2012,34(2):173-187
The aim of this study was to explore the differences between taxa groups with different ecological strategies for persistence, regarding their responses to environmental factors and seasonal variation. We studied the relationship between the seasonal patterns and habitat attributes of the Ephemeroptera, Plecoptera, Trichoptera (EPT) and the Colepotera, Heteroptera (CH) assemblages. Sampling was carried out in May, July and October of 2009. Samples were taken according to the AQEM protocol at 10 stream sections in the Mecsek Mountains. Based on multivariate analyses (RDA, pRDA), distinctive differences were found between the EPT and the CH taxa groups regarding their response to local chemical variables and variables describing the riparian vegetation. The measured environmental variables had a higher relative influence on the distribution patterns of EPT and CH assemblages than spatial variation of species patterns. The physical structure of aquatic habitats, including the type of bedrock, had greater effects on CH than EPT patterns, whereas the structure of riparian vegetation was more important for EPT than CH. Average density and average taxon richness of EPT were seasonally variable, but CH assemblages were not.  相似文献   

15.
The environmental factors correlating with community structure of vegetation on talus slopes of the 785 km long Niagara Escarpment, southern Ontario, Canada, were studied using canonical correspondence and regression analysis. The bryophytes and higher vascular plants were analysed separately to see if their responses were similar or different. Both vascular plants and bryophytes responded similarly to the environmental variables that were measured. For both vegetation components, location from north to south explained most of the variance. When species richness was plotted against location for the complete vegetation and for the two components separately, the results showed that vascular plant species richness decreased with increasing latitude, while bryophyte richness increased. The magnitude of both of these trends was slight but consistent with the hypothesis that available environmental energy governs a significant amount of the variance in species richness. Since separate components of the talus vegetation were shown to respond differently to the same environmental variable, groups of taxa should not be excluded from community level studies without a consideration of the possible consequences of this bias.  相似文献   

16.
Relationship between water quality variables and distribution, diversity and abundance of sedimentary chironomids (Diptera: Chironomidae) were examined in 51 limnologically different shallow lakes in Finland. The objective was to identify which of the water quality parameters influenced chironomids the most and to explore the potential of developing a palaeoecological tool to infer past changes in water quality for the use of lake management in conservation, preservation and restoration projects. In addition, taxon-specific optima and tolerances were calculated to identify indicators for ultraoligotrophic–hypereutrophic Finnish lakes. The statistical tests indicated that the chironomid assemblages were closely related to water quality. Of the examined environmental variables total phosphorus (TP), total nitrogen (TN), colour, turbidity and hypolimnetic oxygen were the most important explanatory variables. Because autumnal epilimnetic TP had the highest eigenvalue (λ1:λ2) ratio, which indicates the relative significance of particular variable in explaining the variance in the species data, and lowest statistical significance level, it was considered to have the greatest potential for the development of a calibration model for quantitative inferences of past limnological conditions. In addition to the complete model, a reduced model using 41 lakes was developed that is independent of covariance with temperature. Of the tested model types, weighted averaging-partial least squares (WA-PLS) had the strongest relationship between observed and inferred TP values together with lowest error of prediction and maximum bias showing favourable model performance. In general, the results of taxon-specific indicator value showed close agreement with previous data. The results provided coherent autecological and synecological data that can be used in qualitative assessments of water quality and ecological status of lakes and most importantly as a basis for the new quantitative tool to be used in palaeolimnological studies and evaluations of TP reference conditions.  相似文献   

17.
1. Tyler’s Line delimits two distinct limnological provinces that reflect differences in climate, geology and vegetation in Tasmania. Lakes west of Tyler’s Line are typically acidic and dystrophic with relatively shallow euphotic zones, whereas eastern lakes are circumneutral and oligotrophic or ultra‐oligotrophic, allowing deeper penetration of light. Consequently, Tyler’s Line defines a boundary where species assemblages change over a relatively short distance. 2. A survey of 48 Tasmanian lakes was undertaken to identify indicator taxa of the two limnological provinces and breakpoints along the pH gradient where shifts in taxa occur. Chironomidae (Diptera) were used because they are ideal candidates for lake classification. 3. Three independent methods (geographical position, piecewise linear regression, two‐way indicator species analysis) verified that chironomids accurately reflect the environmental variables defining Tyler’s Line at lake and catchment scales. Chironomid genera are often speciose, and members of the same genus can have markedly different responses to a given environmental variable. Although the types of taxa changed along the pH gradient, richness did not. This finding contrasts with many studies from the northern hemisphere but accords with other studies from Australia. 4. Models of pH, developed using both partial least squares and weighted averaging partial least squares, can be used to understand past natural variability of pH in Tasmania and to test hypotheses regarding the timing, magnitude and source of contamination in impacted aquatic ecosystems.  相似文献   

18.
Chironomid assemblages in thirty-three mountain lakes situated above tree line in the Slovakian part of the Tatra Mountains were studied during 2000–2002. Chironomid species/taxa, collected as pupal exuviae, were correlated with physical, chemical, and lake morphometry variables of 22 lakes. Two-way indicator species analysis (TWINSPAN) was used to classify the lakes into four distinct groups: higher situated alpine lakes, lower situated alpine lakes, subalpine lakes and acidified lakes. Presence/absence of eight taxa was identified as indicative for this classification. In discriminant function analysis, pH, dissolved organic carbon, altitude and lake area were the most significant variables reflecting differences among groups of lakes. This model of four variables allowed 77% success in the prediction of group membership. A multiple regression model with lake area, concentration of magnesium and total phosphorus accounted for 37% of the variance in taxa richness. Lakes with greater area contained more chironomid taxa than smaller ones. Lakes with higher alkalinity and higher trophic status tend to support more taxa. Canonical correspondence analysis (CCA) indicated that most variation in the composition of chironomid assemblages was related to pH and to altitude. The results can be used as reference data for long-term monitoring of the Tatra lakes, especially in connection with a recovery from acidification and global climatic change.  相似文献   

19.
Eight glacial lakes of the Bohemian Forest (Czech Republic and Germany) were characterised by the distribution of chironomids collected as pupal exuviae. Twenty-eight taxa were identified, including some faunistically interesting species of the region. Two-way indicator species analysis (TWINSPAN) was used to classify lakes according to their taxonomic composition. Canonical correspondence analysis (CCA) and multiple regression were used to relate the chironomid assemblages to two sets of explanatory variables: (i) local environmental variables, and (ii) broad-scale spatial variables. The TWINSPAN classified the lakes into four groups, whereas presence/absence of three taxa was indicative for this classification. The CCA of assemblage composition on environmental variables showed that chironomids respond significantly to altitude and alkalinity. The ordination of composition data on geographical variables revealed strong longitudinal gradient in chironomid distributions. Altitude and alkalinity accounted for 36.2% of the total variation, while the geographic gradient explained 20.5%. As revealed by the variation partitioning procedure, the significant effect of these variables was, in large part, independent of each other. Overall taxonomic richness appeared to be governed by altitude only. Causal ecological and historical factors underlying these results are discussed. This paper may provide a basis for hypothesis testing in future research of the Bohemian Forest lakes.  相似文献   

20.
Abstract The vegetation patterns in the Central Coast region of New South Wales have been extensively studied with respect to single environmental variables, particularly soil nutrients. However, few data are available on the effects of multiple environmental variables. This study examines the relationships between vegetation and multiple environmental variables in natural vegetation on two underlying rock types, Hawkesbury Sandstone and Narrabeen Group shales and sandstones, in Ku-ring-gai Chase National Park, Sydney. Floristic composition and 17 environmental factors were characterized using duplicate 500 m2 quadrats from 50 sites representing a wide range of vegetation types. The patterns in vegetation and environmental factors were examined through multivariate analyses: indicator species analysis was used to provide an objective classification of plant community types, and the relationships between vegetation and environmental factors within the two soil types were examined through indirect and direct gradient analyses. Eleven plant communities were identified, which showed strong agreement with previous studies. The measured environmental factors showed strong correlations with vegetation patterns: within both soil types, the measured environmental variables explained approximately 32–35% of the variation in vegetation. No single measured environmental variable adequately described the observed gradients in vegetation; rather, vegetation gradients showed strong correlations with complex environmental gradients. These complex environmental gradients included nutrient, moisture, and soil physical and site variables. These results suggest that a simple ‘nutrient’ hypothesis regarding vegetation patterns in the Central Coast region is inadequate to explain variation in vegetation within soil types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号