首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The development time for eggs and nymphs and female fertility were determined for Nesidiocoris tenuis Reuter (Het., Miridae: Dicyphini) at 15, 20, 25, 30, 35 and 40 ± 1°C, using tomato, Solanum esculentum (Miller), as substrate and eggs of Ephestia kuehniella Zeller as substitute prey. At 40°C, N. tenuis was unable to develop and barely reproduced. Egg development ranged from 30.8 days at 15°C to 6.3 days at 35°C. The cumulative thermal requirements for the eggs were 148.6 degree days (°d) and the lower thermal threshold, 10.3°C. The duration of the nymphal instar decreased from 55.9 days at 15°C to 8.6 days at 35°C. The thermal constant for the nymphs was 182.3 °d and the lower thermal threshold 11.7°C. No nymphs survived at 40°C, and the highest mortalities were at extreme temperatures (15 and 35°C). Female and male weights were influenced significantly by temperature. The fertility of N. tenuis females was reduced greatly at 15 and 40°C. The highest fertility during an observation period of 18 days following female emergence (79.5–60.0 nymphs per female) was within the temperature range of 20 to 35°C. Fertility was related directly to female weight and temperature (r2 = 0.932). Based on development, reproduction data and thermal requirements, the optimum temperature range for N. tenuis was established as being between 20 and 30°C. Overall, N. tenuis is the most thermophilous of all dicyphines from vegetable crops in the Mediterranean area studied so far.  相似文献   

2.
Subsequent to the widespread adoption of Bt transgenic cotton in China and an associated reduction in pesticide use, Adelphocoris spp. (Hemiptera: Miridae) are the key pests of this crop. Three species (Adelphocoris suturalis, Adelphocoris fasciaticollis and Adelphocoris lineolatus) are found in Chinese Bt cotton fields, each with a distinct geographic distribution and phenology. In the present study, the development and fecundity of the three species are compared in the laboratory at various temperatures in the range 10–35 °C. Although nymphal development and adult moulting occurs under all temperature regimes, egg eclosion is not observed at 10 °C. In general, egg and nymphal development periods decrease with increasing temperature up to 30 °C. The lower and upper development thresholds are, respectively, 5.6 and 40.1 °C for A. suturalis eggs; 5.0 and 38.4 °C for nymphs; 6.3 and 39.0 °C for A. fasciaticollis eggs, 3.0 and 41.9 °C for nymphs; 5.6 and 41.3 °C for A. lineolatus eggs; and 6.2 and 38.8 °C for nymphs. Thermal constants are 189.9 degree days (DD) (egg) and 308.8 DD (nymph) for A. suturalis, 188.8 DD (egg) and 366.7 DD (nymph) for A. fasciaticollis, and 231.7 DD (egg) and 291.6 DD (nymph) for A. lineolatus. Temperatures above 30 °C affect egg development of A. fasciaticollis and A. lineolatus adversely, but not that of A. suturalis. At the same time, nymphal survival of A. suturalis is reduced at 10 °C. Longevity of all species declines with increasing temperature, whereas extremes of temperature (i.e. 10 and 35 °C) interfere with oviposition. The estimated optimum range for oviposition is 23–25 °C, irrespective of species. In general, development and fecundity of the three Adelphocoris spp. is consistent with their respective distribution and seasonal dynamics. The present study provides insight into the distribution and phenology of Adelphocoris spp., and contributes to the modelling of their population dynamics.  相似文献   

3.
1. This is the first study on the life cycle, growth and production of Sigara selecta, a Palearctic corixid species typical of brackish and saline waters, at the warmest limit of its European distributional range. The study combines field and laboratory approaches. 2. The S. selecta population studied was multivoltine, producing four asynchronous cohorts from early spring to December and overwintering in the adult state. Development time from egg to first adult ranged from 2 to 3 months. A minimum temperature threshold of 10 °C and diel amplitude of ≥10 °C were observed for reproduction and oviposition. 3. Maximum density and biomass were reached in mid spring and early autumn. The sex ratio was unbalanced, females dominating during most of the year, except in spring, when the sex ratio was balanced or dominated by males during the first adult emergence. 4. Laboratory rearing experiments at constant temperatures (18, 22 and 26 °C) pointed to a significant effect of temperature on egg development and nymphal growth. In the range of temperatures tested, both egg and nymphal instar duration decreased with increasing temperature. Mean nymphal development time varied from 43 days at 26 °C to 71 days at 18 °C, with a mean of 57 days. Survivorship was independent of temperature. 5. A reduction in nymphal and adult length was observed with increasing temperature. 6. Growth rates decreased with increasing body mass and increased as temperature increased. The first nymphal instar had the highest length increments and growth rates in all temperature treatments. 7. Satisfactory agreement was found between the field and laboratory degree‐days required for complete development from egg to first adult. At constant and variable thermal regimes, degree‐days decreased with increasing temperature. 8. Rate of growth in the field could be predicted with reasonable accuracy from a simple model obtained as a function of body mass. The model explained 67% of the variability in growth rates. 9. Annual production and production/biomass ratio (P/B) of S. selecta estimated by the Instantaneous Growth method were 1.28 g m?2 year?1 and 13.71, respectively. Spring and autumn cohorts contributed 32% and 54%, respectively, of total annual production. Maximum production corresponded to intermediate temperature periods, although summer production may have been underestimated because of the longer sampling interval relative to cohort interval production. The Size Frequency method underestimated production by at least 18% with respect to the Instantaneous Growth method.  相似文献   

4.
Pilophorus gallicus Remane (Hemiptera: Miridae) is a predatory mirid reported in deciduous trees in the western Mediterranean area. This work aimed to determine the biological and demographic parameters for this species at different temperatures (15, 20, 25 and 30°C). Egg hatching times shortened from 57.8 days at 15°C to 9.2 days at 30°C, and nymphal development times declined from 62.8 days at 15°C to 11.1 days at 30°C. The hatching and nymphal survival rates were low at 15 and 30°C. The lower thermal thresholds for the egg and nymphal development were 12.4 and 12.0°C, respectively. These high thermal thresholds could be a safety mechanism to avoid the emergence of nymphs in the unfavorable winter period. Female weight increased between 15 and 25°C and decreased at 30°C. The fecundity increased from 70.2 eggs per female at 15°C to 212.4 eggs per female at 25°C, and decreased to 88.5 eggs per female at 30°C. Fertility ranged from 9.4% at 15°C to 40.9% at 25°C, being 24.9% at 30°C. The intrinsic rate of natural increase (rm) rose from 0.001 to 0.081 between 15 and 25°C and decreased to 0.05 at 30°C. In summary, this species performs poorly at low temperatures and has a relative tolerance of high temperatures (30°C); its performance was best at 25°C. Knowledge of the variation in the biological parameters with temperature may be very useful for the understanding of its ecology and population dynamics.  相似文献   

5.
The mirid bug Sahlbergella singularis feeds on cocoa pods and shoots, causing considerable crop losses. As laboratory experimentation requires numerous insects, this study aimed at improving available rearing method of S. singularis for Cameroon. Fifty second to fifth nymphal stages were collected at a cocoa farm and reared to the adult stage on cocoa pods in an insectary (T = 24.7 ± 0.9°C, RH = 84.5 ± 6.8%, photoperiod: 12 : 12 L : D). Newly emerged females were confined for 5–6 days on cocoa twigs for sexual maturation and each female paired with a male for 24 h. The pairs were returned to the field and enclosed in mousseline sleeves on attached cocoa pods, for egg laying. After 16 days (expected egg lifetime), the sleeve cages were checked daily to detect newly hatched nymphs. Then, the pods were collected and brought to the insectary, where nymphs continued to emerge and develop into adults. Our method allowed the production of 14.6 ± 6.7 nymphs per female per generation, for 15 consecutive generations. Nymphal survival was calculated to be 68.2% and the mean duration of the nymphal development was measured at 22.7 ± 3.1 days. The rearing performance was evaluated using life‐table calculations. The net reproductive rate (R0) was 6.59; the intrinsic rate of increase (r) was 0.037 per female per day with a population doubling time (Td) of 18.9 days. On average each female contributed 9.70 individuals to the population given a mean generation time (Tc) of 52.1 days. The percentage of reproductive females and the mean number of nymphs per female were significantly different between generations, with 86.8% and 18.1% in generation G7 as compared to 45.8% and 8.4% for generation G5, respectively. As rainfall showed concordant variations during the period of investigation, we discuss the impact of this factor on mirid fecundity.  相似文献   

6.
Releases of Peristenus digoneutis against Lygus spp. in North America have been conducted for many years; however, no published procedures for mass production of the biological control agent were available. A laboratory rearing method was developed using Lygus lineolaris as the host to enhance establishment efforts and provide large numbers of wasps for inundative releases into high value fruit crops. Experiments were conducted to determine optimum host:parasitoid density and rearing temperature. The effects of nymph:wasp ratios and temperature on parasitism and wasp survival showed a 20:1 ratio at 20°C provided high parasitism (256 parasitized nymphs/wasp over lifetime) and excellent wasp survival of 27 days. Experiments on diapause-inducing conditions for P. digoneutis demonstrated that fluctuating temperatures of 23°C (day) and <16°C (night) and corresponding photo phases of 16 h light, for rearing parasitized nymphs, produced 100% diapausing parasitoids whereas non-diapausing parasitoids were only produced at more than 16 h light. Furthermore, parasitized Lygus nymphs need to be transferred to short day conditions no later than 10 days after parasitism to produce diapausing parasitoids. Critical life stages for exposure to conditions inducing diapause, the egg, first and second instar parasitoid larva, occurred from 0 to 10 days at 24°C constant temperature. Increased time in cold storage reduced the number of days to first emergence of parasitoids from diapausing cocoons when transferred to warm temperatures. The optimum storage time for diapausing P. digoneutis is between 25 and 44 weeks, depending upon the length of time that cocoons remain at warm conditions prior to chilling.  相似文献   

7.
The zoophytophagous plant bug Nesidiocoris tenuis (Reuter) is increasingly used for biological control of various agricultural pests. Its native range includes Southern Europe, North Africa, Southern and South‐Eastern Asia, although only the Mediterranean strains have been studied experimentally. We investigated effects of temperature and photoperiod on nymphal survival and development, rate of female maturation and egg load in two strains of N. tenuis originating from temperate and subtropical regions of South‐Eastern Asia: the ‘Temperate strain’ (from Suwon, Republic of Korea, yearly average air temperature is 13.3°C) and the ‘Subtropical strain’ (from Miyazaki, Japan, yearly average air temperature is 18.2°C). Nymphs and adults were reared on tomato leaflets and fed with eggs of the grain moth Sitotroga cerealella under four temperatures (15, 20, 25 and 30°C) and three photoperiods (10, 12 and 14 h of light per day). In spite of long‐term (40–50 generations) rearing under constant laboratory conditions, the studied strains still show a correlation between thermotolerance indices and climate at origin. In particular, at the low temperature of 15°C, survival of nymphs of the Temperate strain was double that of the Subtropical strain, whereas at the higher tested temperatures, survival of the Subtropical strain was not significantly different or even was higher than that of the Temperate strain. The duration of nymphal development in the Temperate strain was significantly shorter than that in the Subtropical strain at 15–25°C, but not at 30°C. In both strains, nymphal survival, duration of nymphal development and rate of female maturation were not significantly dependent on photoperiod, and diapause was not observed under any conditions tested. We conclude that the Subtropical strain of N. tenuis is better adapted to high temperatures, whereas the Temperate strain is more promising for application in greenhouses at medium and low temperatures.  相似文献   

8.
Abstract The effects of day‐length and temperature on pre‐adult growth and induction of reproductive diapause are studied in Orius sauteri and Orius minutus (Heteroptera: Anthocoridae) from northern (43.0°N, 141.4°E) and central (36.1°N, 140.1°E) Japan. In the north, at 20 °C, pre‐adult growth is slower under an LD 14 : 10 h photoperiod than under shorter or longer photophases. At 24 and 28 °C, the longer photophases result in shorter pre‐adult periods. Acceleration of nymphal growth by short days in autumn appears to be adaptive. In the central region, this response is less pronounced, suggesting that timing of adult emergence is less critical than in the north. Day length also influences the thermal requirements for pre‐adult development. The slope of the regression line representing temperature dependence of pre‐adult development is significantly smaller and the lower development threshold (LDT) is significantly lower under an LD 12 : 12 h photoperiod than under long‐day conditions. The weaker dependence of nymphal growth on temperature and the lower LDT in autumn might be adaptive. In the north, increased temperature shifts the critical day length of diapause induction and suppresses the photoperiodic response in O. sauteri but not in O. minutus. Further south, the incidence of diapause in both species is low even under short‐day conditions but the same interspecific difference is observed (i.e. increase of temperature affects the response in O. sauteri but not in O. minutus). This suggests seasonally earlier diapause induction with weaker temperature dependence in O. minutus than in O. sauteri.  相似文献   

9.
Tetraphleps galchanoides Ghauri (Hemiptera: Anthocoridae) nymphs were collected from hemlock woolly adelgid (HWA) Adelges tsugae Annand (Hemiptera: Adelgidae) infested Tsuga sp. in Baoxing, Sichuan, China. First and second stage nymphs collected from foliage shipped from China; were reared to adults and tested for feeding rates and host preferences. They were reared at 5, 8, 12, and 15 ± 1 °C from November to December, January to March, April, and May to June, respectively, in the quarantine laboratory at Virginia Polytechnic Institute and State University. At 8 °C, development time was 15, 20, and 40 days for the N-III, IV, and V nymphal stages, respectively. Adult males lived 83 days with a range of 21–147 days. A single adult female lived for 21 days. At 5 °C, second stage T. galchanoides nymphs consumed 0.8 HWA nymphs per day, and 2.0 HWA nymphs per day at the N-V stage. At 8 °C, consumption of HWA nymphs ranged from 1.3 to 3.4 nymphs per day for the N-III to N-V stages, respectively. Adult T. galchanoides consumed more HWA eggs than HWA adults, pine bark adelgid (PBA) Pineus strobi (Hartig) (Hemiptera: Adelgidae) adults, and eggs in no-choice tests. In choice tests with HWA eggs and PBA eggs, more HWA eggs were eaten. Adult and nymph body measurements are presented for determination of nymphal instars.  相似文献   

10.
We studied the development of Geocoris varius (Uhler) and Geocoris proteus Distant reared on Ephestia kuehniella Zeller eggs at 20, 24, 26, 30, 33, or 36?°C. The lower developmental thresholds (T 0) and the thermal constants (K) of eggs and nymphs of G. varius were 13.3?°C, 151.1 degree-days and 13.4?°C, 433.0 degree-days, respectively; those of G. proteus were 16.1?°C, 98.3 degree-days and 16.9?°C, 226.9 degree-days, respectively. The hatch rate of G. varius eggs was significantly lower at 33?°C than at ??30?°C, and no eggs hatched at 36?°C. That of G. proteus was lowest at 20?°C and did not decline significantly at 36?°C. The survival rate throughout the nymphal period increased with temperature up to 30?°C in G. varius, and it was lowest at 20?°C in G. proteus. Thus, the optimal rearing temperatures for immature stages appear to be about 24?C30?°C for G. varius and 26?C33?°C for G. proteus. It might be possible to improve the efficiency of their mass production by controlling the rearing temperature in the above ranges. This would also make the developmental stages of nymphs more uniform and so prevent cannibalism in mass rearing.  相似文献   

11.
12.
《Journal of Asia》2022,25(3):101927
Arma chinensis (Fallou) is a predaceous pentatomid with the potential to control a wide range of insect pests. In this study, the stage-specific temperature-dependent development and survival of A. chinensis was investigated under seven constant temperatures (range 18–35 °C) when fed with yellow mealworm (Tenebrio molitor L.). Developmental times (in days) for the immature stage, entire nymphal stage, and egg-to-adult development were inversely proportional to temperatures between 18 and 33 °C (30 °C for eggs and 1st instar nymphs). The lowest survival rate of A. chinensis was observed at 18 °C (6.7%), whereas it was the highest (80–93.3%) at temperatures ranging from 21 to 24 °C. The low temperature thresholds for the egg, entire nymph stage, and egg-to-adult development were 14.3, 12.28, and 12.8 °C, respectively, while the thermal constants for these stages were estimated to be 85.47, 334.9, and 423.8° days. Among the three non-linear models examined, the Taylor model showed the best fit for the egg data, the Briére1 model was the best fit for the 1st instar nymph stage, and the Lactin1 model was more approprate for all the other instar stages, the entire nymphal stage, and overall development. The upper temperature thresholds estimated using the Lactin1 model for eggs, overall nymphal stage, and egg-to-adult development were 38.57, 38.9, and 40.0 °C. The optimal temperature for the overall egg-to-adult period was estimated to be 33.5 °C. The results of this study can be used for the mass rearing of this natural pest enemy and development of phenology models of its seasonal progress.  相似文献   

13.
Chelifers (Pseudoscorpions) are generalist predators of small prey such as mites. Their occasional presence in honeybee hives suggests potential to exploit them as part of a management programme against Varroa mites (Varroa destructor), a significant pest of honeybees. Two species of native New Zealand chelifers Nesochernes gracilis and Heterochernes novaezealandiae, shown to consume Varroa mites, were collected from commercial nucleus hives or in litter surrounding the hives. Methods for mass‐rearing the chelifers were developed to provide specimens for research and introduction into beehives for biological control of Varroa. Cultures were fed aphids and fruit fly larvae in vented containers containing sand and bark. N. gracilis was maintained at 14°C, 18°C, and 22°C. At 18°C, 1423 nymphs were reared from 140 N. gracilis adults, with 84.8% of all nymphs produced at this temperature. H. novaezealandiae was maintained at 18°C and 22°C, with 5 nymphs raised from 12 adults at 18°C and none at the higher temperature.  相似文献   

14.
Abstract. The effects of temperature on the development of early stages and the thermopreference of nymphs and adults were analysed in the haematophagous bug Triatoma brasiliensis Neiva, 1911 (Hemiptera, Reduviidae). Egg hatching, mortality of nymphs, feeding and moulting success of the early stages of T. brasiliensis were all affected by temperature. While high rates of egg hatching were observed between 25 and 27 °C, no hatching occurred at 12, 19 and 38 °C. The mortality of first‐instar nymphs was highest at 38 °C, at which no insects survived after 10 days of exposure. Feeding success was only affected at the lowest temperature (12 °C). No ecdysis was observed in the groups exposed to 12, 19 and 21 °C. Recently fed fourth‐instar nymphs preferred to stay at a temperature of approximately 30 °C. The preferred temperature began to decline gradually to approximately 27 °C during ecdysis, reaching 26 °C at 30 days after ecdysis. After a second blood meal, the insects' preferred temperature was again approximately 30 °C. The thermopreference pattern of females was similar to that of nymphs. Nymphs and females showed a daily fluctuation in their preferred temperature, moving towards higher values at the beginning of the dark phase, and choosing lower ones after this time interval, at which they remained until the end of the light phase. The females laid their eggs in all sectors of the arena, although the largest numbers of eggs were found between 28 and 32 °C.  相似文献   

15.
This paper presents the results of the first comprehensive study of the biology of a tropical bush-cricket. The eggs were laid without any external protective structures and lost water readily in unsaturated air; losses of more than 16% of the original fresh weight were usually fatal. Development and hatching took place only if the eggs were in contact with water. The water content increased by about 500% during development. The mean incubation period was 171 and 116 days at constant temperatures of 20oC and 28oC, respectively, but at temperatures fluctuating by±3°C about a mean of 28°C this period was reduced to a mean of 88 days. The eggs failed to develop if exposed to freezing temperatures for more than five days or kept at a constant temperature of 307deg;C or above. The duration of the nymphal period varied from 83 to 131 days at a temperature range of 22–30°C (mean 26° C). There were four or five nymphal instars in the male and five or six in the female. The linear growth of the hind femur conformed to Dyar's law. There was a conspicuous colour change during development, all the first-instar nymphs being leaf green and the adults predominantly brown. In nature the species lives exclusively on the forest floor and is markedly nocturnal in habits, hiding underneath litter during the day. The eggs are dormant during the dry season, hatching at the onset of the rains (March/April at Ibadan). The nymphs reach maturity from July onwards and the adults have mostly died off by the end of the rainy season (October). In the laboratory the species was found to have a temperature preference of 26–32°C, immobilization setting in at 18°C and 42°C, and a humidity preference of 60–80% R.H.; this corresponds with the prevailing conditions in its forest habitat. The nocturnal pattern of activity persisted for several days in continuous darkness, with no marked acceleration. Movement was inhibited for several days by artificial illumination. Reversed illumination reversed the rhythm of activity.  相似文献   

16.
The development, survivorship, longevity, reproduction, and life table parameters of the Asian citrus psyllid, Diaphorina citri Kuwayama were evaluated at 10°C, 15°C, 20°C, 25°C, 28°C, 30°C and 33°C. The populations reared at 10°C and 33°C failed to develop. Between 15°C and 30°C, mean developmental period from egg to adult varied from 49.3 days at 15°C to 14.1 days at 28°C. The low‐temperature developmental thresholds for 1st through 5th instars were estimated at 11.7°C, 10.7°C, 10.1°C, 10.5°C and 10.9°C, respectively. A modified Logan model was used to describe the relationship between developmental rate and temperature. The survival of the 3rd through 5th nymphal instars at 15–28°C was essentially the same. The mean longevity of females increased with decreasing temperature within 15–30°C. The maximal longevity of individual females was recorded 117, 60, 56, 52 and 51 days at 15°C, 20°C, 25°C, 28°C and 30°C, respectively. The average number of eggs produced per female significantly increased with increasing temperature and reached a maximum of 748.3 eggs at 28°C (P<0.001). The population reared at 28°C had the highest intrinsic rate of increased (0.199) and net reproductive rate (292.2); and the shortest population doubling time (3.5 days) and mean generation time (28.6 days) compared with populations reared at 15–25°C. The optimum range of temperatures for D. citri population growth was 25–28°C.  相似文献   

17.
This study evaluated the thermal requirements for development of the cotton mealybug Phenacoccus solenopsis depending on different biological parameters on Okra leaves Abelmoschus esculentusat under two constant temperatures (20 and 30 °C) at (RH 65%, 12:12 h. light/dark). The effect of temperature on eggs was ineffective since it hatched shortly to first nymphal instars after deposition. While the tested temperature caused significant effects on nymphal durations, pupation rate (pre-male stage), females emergence %, pre-oviposition, longevity, post-oviposition periods and fecundity in females (egg deposition, ovisacs numbers and hatchability %). The thermal constant and developmental zero were calculated to be 7.29 °C and 79.9 degree-days (DDs) for eggs, 11.67 °C and 272.9 DDs for nymphal stages, 11.06 °C and 46.4 DDs for males and then 3.31 °C and 554.1 DDs for females, respectively. The duration of the life cycle was 65.6 ± 10.36 days at 20 °C; this was shortened to 35.51 ± 1.12 days at 30 °C. The thermal requirements to complete the insect development for one generation was 8.2 °C for the developmental zero and 774.1 DDs for the thermal constant. Based on the thermal requirements values, the average life cycle duration from January to December 2016 was 61.78 days and the number of annual generations was 7.143 when the average annual temperature was 23.29 °C.  相似文献   

18.
The development rates and fecundity of three important pests of strawberry in the UK were determined over a range of temperatures. Development time of the strawberry tarsonemid mite, Phytonemus pallidus, from egg lay to adult, ranged from a mean of 28.4 days at 12.5°C to 8.8 days at 25°C. No nymphs developed to adult at 10°C. Females lived for up to 45 days and laid a mean of 24.3 and 28.5 eggs at 20°C and 25°C respectively. Total development time from egg lay to adult for the strawberry blossom weevil, Anthonomus rubi, ranged from a mean of 95.7 days at 10°C to 18.2 days at 25°C. Mean fecundity at 20°C was 157.6 eggs, and the oviposition period averaged 71.6 days. When nymphs were reared on strawberry, development of the European tarnished plant bug, Lygus rugulipennis, from egg lay to adult, ranged from 83.8 days at 15°C to 28.8 days at 25°C. Development times on groundsel were shorter and ranged from 65.6 to 22.2 days at 15°C and 25°C. Only two nymphs developed to adults at 10°C; no eggs hatched at that temperature. Mean fecundity at 20°C was 75.4 eggs, but ranged from 23 to 179. Under a fluctuating temperature regime of 10°C for 12 h:20°C for 12 h, nymphs of L. rugulipennis took 40.3 days to become adult on strawberry, and 33.4 days on groundsel. Simple linear models fitted the developmental rate ‐ constant temperature relationship well for all species, accounting for 95–98% of the total variation in observed developmental rates. Development under fluctuating temperatures illustrated the potential problem of extrapolating linear models beyond the conditions of the experiment.  相似文献   

19.
First instar nymphs and adults of the grain aphid Sirobion auenae that had been reared at 10°C and 20°C over a number of generations, were cooled to -5°C and -10°C for 1 h and 6 h and returned to 20°C to assess the effects of brief exposures to low temperatures (cold-pulses) on their survival. rate of development, longevity and fecundity. A strong acclimation response was observed in first instar nymphs, with significantly less mortality in groups reared to 10°C compared to 20°C. Mean development time from first instar to adult was not significantly affected by low temperature exposure at the first nymphal stage. Longevity in all groups cooled as first instars was reduced by the sub-zero cold-pulses, and was also dependent on temperature and exposure time. Acclimated aphids survived longer than non-acclimated individuals. Reproductive rate, in terms of the number of nymphs born per aphid per day, was unaffected by cold stress applied at the first instar stage. Total fecundity was however reduced, being a function of the number and longevity of the survivors. Adult aphids were less cold hardy than nymphs; mortality was higher at -10°C than -5°C increasing with duration of exposure from 1 h to 6 h. Mean fecundity was reduced significantly in aphids cooled at the adult stage, the number of aphids born per day decreasing as the exposure period of the cold-pulse increased, suggesting that low temperature had affected embryogenesis. All the nymphs born to adults surviving exposure to -5°C for 6 h died within 48 h of birth, indicating that low temperature has a pre-natal effect on mortality.  相似文献   

20.
Predatory insects that depend upon particular prey animals are commonly regulated by the prey animal’s abundance. Nymphs of the giant water bug Kirkaldyia (=Lethocerus) deyrolli (Heteroptera: Belostomatidae) are predators regarded as specialists in feeding on tadpoles. We studied the ontogenetic diet shift of aquatic nymphs by quantifying instar abundance and by analyzing captured prey and prey relative abundance during the period of rice irrigation in three localities. We also evaluated the contribution of major prey items (tadpoles, frogs, and Odonata nymphs) on specific growth rates of each nymphal stage in a rearing experiment. First to third-instar nymphs of K. deyrolli fed mainly on tadpoles, regardless of differences in prey availability. Nymphs of subsequent fourth and fifth instar stages shifted from tadpoles to other prey animals within each rice field. A rearing experiment demonstrated that giant water bug nymphs provided with tadpoles had greater specific growth rates at all nymphal stages, except for the final stage, than nymphs fed other prey (frogs and Odonata nymphs). The emergence of young K. deyrolli nymphs seemed to coincide with the period during which tadpoles became abundant in the rice fields. Consumption of tadpoles seems important to allow the nymph to complete its larval development in an unstable temporary habitat. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号