首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The leaf surfaces of Tamarix, a salt-secreting desert tree, harbor a diverse community of microbial epiphytes. This ecosystem presents a unique combination of ecological characteristics and imposes a set of extreme stress conditions. The composition of the microbial community along ecological gradients was studied from analyses of microbial richness and diversity in the phyllosphere of three Tamarix species in the Mediterranean and Dead Sea regions in Israel and in two locations in the United States. Over 200,000 sequences of the 16S V6 and 18S V9 hypervariable regions revealed a diverse community, with 788 bacterial and 64 eukaryotic genera but only one archaeal genus. Both geographic location and tree species were determinants of microbial community structures, with the former being more dominant. Tree leaves of all three species in the Mediterranean region were dominated by Halomonas and Halobacteria, whereas trees from the Dead Sea area were dominated by Actinomycetales and Bacillales. Our findings demonstrate that microbial phyllosphere communities on different Tamarix species are highly similar in the same locale, whereas trees of the same species that grow in different climatic regions host distinct microbial communities.  相似文献   

2.
库姆塔格沙漠南缘荒漠植物群落多样性分析   总被引:38,自引:0,他引:38       下载免费PDF全文
 根据20个样地的调查资料,应用重要值计算多样性指数、均匀度指数、丰富度指数 、优势度指数,对库姆塔格沙漠南缘荒漠植物群落物种多样性进行分析。结果表明: 1)荒漠植物群落分布随其生境地貌不同而不同,山前戈壁上分布有合头草(Sympegma regelii)群落,冲积河道低地分布有荒漠林胡杨(Populus euphratica)、多枝柽柳(Tamarix ramosissima)、胀果甘草(Glycyrrhiza inflata)群落,戈壁沙漠过渡带为梭梭(Haloxylon ammodendron)群落,低海拔的沙山上分布有沙拐枣(Calligonum mongolicum)群落、膜果麻黄(Ephedra rzewalskii)群落和梭梭群落。2)荒漠植物群落物种多样性水平较低,群落结构简单,物种组成单一。群落Shannon_Wiener物种多样性水平表现为合头草群落最高(1.706),具有草原化荒漠植被类型的成分;梭梭群落、膜果麻黄群落居中(0.875~0.890),荒漠植被类型特征明显;沙拐枣群落、胡杨群落、多枝 柽柳群落、胀果甘草群落较低(0.079~0.495),荒漠林、盐地沙生灌丛及盐化草甸植被均有零星分布。3)荒漠植物群落结构层次中,灌木层占居主导地位,群落灌木层物种多样性水平(0.769~1.451)远远大于草本层(0.193~0.254),且草本层物种多样性受灌木层影响较大。4)荒漠植物群落物种多样性分布格局表现为经向、纬向和海拔梯度的变化,经向、纬向变化为物种多样性水平较高的草原化植物合头草群落(1.706)向物种多样性水平较低的荒漠植物梭梭群落(1.379)和盐化植物多枝柽柳群落(0.376)的过渡,海拔梯度则 呈现低水平的沙拐枣群落(0.819)到高水平的膜果麻黄群落(0.890)向低水平的梭梭群落 (0.645)变化。荒漠植物群落过渡地带一般具有较高的物种多样性和较低的生态优势度。  相似文献   

3.
Understanding the links between plant diversity and soil communities is critical to disentangling the mechanisms by which plant communities modulate ecosystem function. Experimental plant communities varying in species richness, evenness, and density were established using a response surface design and soil community properties including bacterial and archaeal abundance, richness, and evenness were measured. The potential to perform a representative soil ecosystem function, oxidation of ammonium to nitrite, was measured via archaeal and bacterial amoA genes. Structural equation modeling was used to explore the direct and indirect effects of the plant community on soil diversity and potential function. Plant communities influenced archaea and bacteria via different pathways. Species richness and evenness had significant direct effects on soil microbial community structure, but the mechanisms driving these effects did not include either root biomass or the pools of carbon and nitrogen available to the soil microbial community. Species richness had direct positive effects on archaeal amoA prevalence, but only indirect impacts on bacterial communities through modulation of plant evenness. Increased plant evenness increased bacterial abundance which in turn increased bacterial amoA abundance. These results suggest that plant community evenness may have a strong impact on some aspects of soil ecosystem function. We show that a more even plant community increased bacterial abundance, which then increased the potential for bacterial nitrification. A more even plant community also increased total dissolved nitrogen in the soil, which decreased the potential for archaeal nitrification. The role of plant evenness in structuring the soil community suggests mechanisms including complementarity in root exudate profiles or root foraging patterns.  相似文献   

4.
Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.  相似文献   

5.
Monitoring bacterial communities is critical for assessing biodeterioration among other processes. This study presents a strategy and an example of comparative analysis of bacterial communities developing in a cave environment, Altamira Cave which contains unique paleolithic paintings. The analyzed question was whether white colonizations discovered throughout the cave corresponded to similar or different bacterial communities. Molecular fingerprints were obtained by PCR–DGGE from DNA and RNA and statistically compared. Results based on DNA analysis showed that a similar bacterial community was present in white colonizations throughout the cave. Fingerprints based on RNA confirmed the similarity of the major metabolically active components of these communities. The proposed procedure confirmed that white colonizations in Altamira Cave were a consequence of the development of a single complex bacterial community, and the method proves to be highly useful for comparative analysis of microbial communities, including biodeteriorating processes and any other comparative analysis of bacterial communities.  相似文献   

6.
Succession is a widely studied process in plant and animal systems, but succession in microbial communities has received relatively little attention despite the ubiquity of microorganisms in natural habitats. One important microbial habitat is the phyllosphere, or leaf surface, which harbors large, diverse populations of bacteria and offers unique opportunities for the study of succession and temporal community assembly patterns. To explore bacterial community successional patterns, we sampled phyllosphere communities on cottonwood (Populus deltoides) trees multiple times across the growing season, from leaf emergence to leaf fall. Bacterial community composition was highly variable throughout the growing season; leaves sampled as little as a week apart were found to harbor significantly different communities, and the temporal variability on a given tree exceeded the variability in community composition between individual trees sampled on a given day. The bacterial communities clearly clustered into early-, mid-, and late-season clusters, with early- and late-season communities being more similar to each other than to the mid-season communities, and these patterns appeared consistent from year to year. Although we observed clear and predictable changes in bacterial community composition during the course of the growing season, changes in phyllosphere bacterial diversity were less predictable. We examined the species–time relationship, a measure of species turnover rate, and found that the relationship was fundamentally similar to that observed in plant and invertebrate communities, just on a shorter time scale. The temporal dynamics we observed suggest that although phyllosphere bacterial communities have high levels of phylogenetic diversity and rapid turnover rates, these communities follow predictable successional patterns from season to season.  相似文献   

7.
In grazed pastures, soil pH is raised in urine patches, causing dissolution of organic carbon and increased ammonium and nitrate concentrations, with potential effects on the structure and functioning of soil microbial communities. Here we examined the effects of synthetic sheep urine (SU) in a field study on dominant soil bacterial and fungal communities associated with bulk soil and plant roots (rhizoplane), using culture-independent methods and a new approach to investigate the ureolytic community. A differential response of bacteria and fungal communities to SU treatment was observed. The bacterial community showed a clear shift in composition after SU treatment, which was more pronounced in bulk soil than on the rhizoplane. The fungal community did not respond to SU treatment; instead, it was more affected by the time of sampling. Redundancy analysis of data indicated that the variation in the bacterial community was related to change in soil pH, while fungal community was more responsive to dissolution of organic carbon. Like the universal bacterial community, the ureolytic community was influenced by the SU treatment. However, different taxa within the ureolytic bacterial community responded differentially to the treatment. The ureolytic community comprised of members from a range of phylogenetically different taxa and could be used to measure the effect of environmental perturbations on the functional diversity of natural ecosystems.  相似文献   

8.
为研究新疆准噶尔盆地艾比湖湿地不同植物群落近10年土壤水盐及养分的动态变化,以环湖1周160km范围内的典型植被梭梭-柽柳、梭梭、胡杨、芦苇群落为研究对象,分析其在2006和2015年土壤含水量、盐分含量、pH值和有机质含量的变化和空间分布特征。结果表明:(1)近10年艾比湖湿地不同植物群落土壤有机质含量和含水量明显下降且整体水平较低,二者分别下降了24.65%~48%和5.41%~20.16%;土壤含盐量、pH值分别上升81.92%~128.74%和2.99%~4.21%,土壤盐碱程度加强。(2)通过土壤水分-盐分-养分空间分布分析显示,各群落近10年土壤盐渍化增加、养分降低程度大小表现为梭梭-柽柳群落胡杨群落梭梭群落芦苇群落,其中梭梭-柽柳群落土壤达到重度盐化水平,有机质降到6级,而其他群落土壤均为中度盐化,有机质为4级,但芦苇群落土壤退化程度较小。研究发现,近10年艾比湖湿地不同植物群落土壤养分不断下降、水分含量降低、盐渍化程度加剧,土壤处于退化状态;土壤质地、降水和气温暖干化是不同植物群落下土壤退化程度差异的基础,人口、耕地面积和农业用水等人类活动使各群落土壤退化程度的差异更加显著。  相似文献   

9.
Soil microhabitats and their heterogeneity are often considered to be among the most important factors affecting soil biotic communities. The microbial commu-nity has become one of the most important links in soil nutrient cycles and trophic components due to its role in biological processes, spatial and temporal dynamics, and physiological adaptation. Sandy-soil desert systems are characterized by fast water infiltration during the rainy season, high salinity, and low moisture availability in the upper soil layers. Plants have developed different ecophy-siological adaptations in order to cope with this harsh environment. The Tamarix aphylla is known to be one of the most commonly adapted plants, exhibiting a mechan-ism for secretion of excess salts as aggregates through its leaves. These leaves aggregate beneath the plant, creating 'islands of salinity'. Soil biotic components are, therefore, exposed to extreme abiotic stress conditions in this niche. The goal of this study was to examine the effect of T. aphylla on the live/dead bacterial population ratio on a spatial and temporal scale. The results emphasize the effect of abiotic factors, which changed on temporal as well as spatial scales, and also on the size of the active soil bacterial community, which fluctuated between 1.44% and 25.4% in summer and winter, respectively. The results of this study elucidate the importance of moisture availability and the 'island-of-salinity' effect on the active microbial community in a sandy desert system.  相似文献   

10.
为研究黄河三角洲盐渍土壤中植物根围AM菌根真菌多样性及影响多样性的因素,从东营孤东和孤岛油区采集碱蓬和柽柳植物的根围土壤,鉴定了4种土壤试样中丛枝菌根(Arbuscular mycorrhiza,AM)的群落组成。结果表明:球囊霉属(Glomus)是盐碱地中的优势种,同时还有许多未知真菌;考察不同盐碱度情况下菌根真菌群落结构差异,结果表明:碱蓬根围土壤中AM真菌的多样性高于柽柳,孤东根围土壤AM真菌多样性比孤岛高。相关分析表明,铵态氮含量与AM真菌多样性呈现显著负相关。  相似文献   

11.
  1. Understanding the successional patterns of microbial communities during a phytoplankton bloom is crucial for predicting the compositional and functional stability of lake ecosystems in response to the disturbance of a bloom. Previous studies on bacterial communities associated with blooms have rarely studied the dynamics of these communities. The successional patterns of bacterial communities within different micro-habitats (i.e. water column versus particles) and mechanisms that shape these communities that differ in composition and structure remain unclear.
  2. We selected a eutrophic urban lake to investigate the succession of bacterial communities during a bloom. We divided the bacterial communities into free-living (FL) and particle-attached (PA) groups based on their different lifestyles. The amplicon-based 16S rRNA gene high-throughput sequencing technology was used to obtain bacterial community composition and phylogenetic structure.
  3. Our study showed distinct successional patterns between FL and PA bacterial communities, and the two bacterial lifestyles showed different responses and resilience to the bloom, in terms of diversity and relative abundance of bacterial taxa. Alpha-diversity of the PA bacterial community decreased during the bloom, whereas that of the FL bacterial community increased. More taxa in the FL bacterial community showed resilience after the disturbance than in the PA bacterial community.
  4. The influence of phytoplankton blooms on the assembly of the bacterial community can be viewed as niche selection that led to the decrease in the relative importance of stochastic processes in shaping both FL and PA bacterial communities. This study shows the ecological significance of the bacterial community response to bloom events in lakes. It also shows that assembly processes differ for bacterial communities that have different lifestyles in lake ecosystems disturbed by phytoplankton blooms.
  相似文献   

12.
To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0 degrees C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the alpha- and gamma-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.  相似文献   

13.
【目的】对新疆艾比湖湿地不同植被类型(柽柳群落、盐节木群落、芦苇群落)和土壤深度(0-5 cm、5 cm-15 cm、15 cm-25 cm、25 cm-35 cm)中氨氧化细菌数量空间分布进行研究,并对其与土壤环境因子的相互关系进行分析。【方法】采用MPN-Griess和Pearson相关分析法。【结果】艾比湖湿地不同植被类型氨氧化细菌的数量存在明显的差异,分布趋势为柽柳群落最高,盐节木群落次之,芦苇群落最低;不同土层中氨氧化细菌的数量也存在明显的差异,分布趋势为15 cm-25 cm>0-5 cm>5 cm-15 cm>25 cm-35 cm;氨氧化细菌数量分布与土壤有机质含量呈显著相关,与土壤pH、含水量、盐度以及氨氮含量等因子之间均无相关性。【结论】艾比湖湿地不同植被类型和不同土层中氨氧化细菌数量的分布均存在显著差异;氨氧化细菌数量的空间分布除与土壤有机质含量呈显著相关外,与其他土壤环境因子均无相关性。  相似文献   

14.
Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed “bulk” rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study was to test the hypothesis that plant species was a major driver for bacterial rhizoplane community composition on individual plant roots. DNA extracted from individual roots was used to determine plant identity, by analysis of the plastid tRNA leucine (trnL) UAA gene intron, and plant-related bacterial communities. Bacterial communities were characterized by analysis of PCR-amplified 16S rRNA genes using two fingerprinting methods: terminal restriction fragment length polymorphisms (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Links between plant and bacterial rhizoplane communities could not be detected by visual examination of T-RFLP patterns or DGGE banding profiles. Statistical analysis of fingerprint patterns did not reveal a relationship between bacterial community composition and plant species but did demonstrate an influence of plant community composition. The data also indicated that topography and other, uncharacterized, environmental factors are important in driving bacterial community composition in grassland soils. T-RFLP had greater potential resolving power than DGGE, but findings from the two methods were not significantly different.  相似文献   

15.
Although pyrogenic organic matter (PyOM) generated during wildfires plays a critical role in post-fire ecosystem recovery, the specific mechanisms by which PyOM controls soil microbial community assembly after wildfire perturbation remain largely uncharacterized. Herein we characterized the effect of PyOM on soil bacterial communities at two independent wildfire-perturbed forest sites. We observed that α-diversity of bacterial communities was the highest in wildfire-perturbed soils and that bacterial communities gradually changed along a sequence of unburnt soil → burnt soil → PyOM. The microbial communities reconstructed from unburnt soil and PyOM resembled the real bacterial communities in wildfire-perturbed soils in their α-diversity and community structure. Bacterial specialists in PyOM and soils clustered in phylogenetic coherent lineages with intra-lineage pH-niche conservatism and inter-lineage pH-niche divergence. Our results suggest that PyOM mediates bacterial community assembly in wildfire-perturbed soils by a combination of environmental selection and dispersal of phylogenetic coherent specialists with habitat preference in the heterogeneous microhabitats of burnt soils with distinct PyOM patches.Subject terms: Forest ecology, Microbial ecology  相似文献   

16.
Soil microhabitats and their heterogeneity are often considered to be among the most important factors affecting soil biotic communities. The microbial community has become one of the most important links in soil nutrient cycles and trophic components due to its role in biological processes, spatial and temporal dynamics, and physiological adaptation. Sandy-soil desert systems are characterized by fast water infiltration during the rainy season, high salinity, and low moisture availability in the upper soil layers. Plants have developed different ecophysiological adaptations in order to cope with this harsh environment. The Tamarix aphylla is known to be one of the most commonly adapted plants, exhibiting a mechanism for secretion of excess salts as aggregates through its leaves. These leaves aggregate beneath the plant, creating ‘islands of salinity’. Soil biotic components are, therefore, exposed to extreme abiotic stress conditions in this niche. The goal of this study was to examine the effect of T. aphylla on the live/dead bacterial population ratio on a spatial and temporal scale. The results emphasize the effect of abiotic factors, which changed on temporal as well as spatial scales, and also on the size of the active soil bacterial community, which fluctuated between 1.44% and 25.4% in summer and winter, respectively. The results of this study elucidate the importance of moisture availability and the ‘island-of-salinity’ effect on the active microbial community in a sandy desert system.  相似文献   

17.
To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.  相似文献   

18.
White lupin was grown in a quartz sand–soil mix with poorly available Ca phosphate. The plants were harvested on days 21, 35 and 51 and DNA was extracted from the non-cluster roots, the young, mature and senescent cluster roots with adhering soil. Bacterial community structure was examined by PCR-DGGE of 16S rDNA, digitisation of the band patterns and multivariate analyses. In all root zones the bacterial community structure changed with plant age. The communities in the rhizosphere of the non-cluster roots were always different from those of the cluster roots. The bacterial communities of the cluster roots were cluster age and plant age dependent. The differences in bacterial community structure between the cluster root age classes were significant on days 35 and day 51 but not on d 21. A separate experiment, in which root exudates and samples for PCR-DGGE were collected simultaneously, showed that both bacterial and eukaryotic (18S rDNA) community structures change with organic acid exudation. While eukaryotic community structure of the cluster roots was correlated with citric acid exudation, bacterial community structure was correlated with cis-acconitic, citric and malic acid exudation.  相似文献   

19.
Disturbances influence community structure and ecosystem functioning. Bacteria are key players in ecosystems and it is therefore crucial to understand the effect of disturbances on bacterial communities and how they respond to them, both compositionally and functionally. The main aim of this study was to test the effect of differences in disturbance strength on bacterial communities. For this, we implemented two independent short-term experiments with dialysis bags containing natural bacterial communities, which were transplanted between ambient and 'disturbed' incubation tanks, manipulating either the intensity or the frequency of a salinity disturbance. We followed changes in community composition by terminal restriction fragment analysis (T-RFLP) and measured various community functions (bacterial production, carbon substrate utilization profiles and rates) directly after and after a short period of recovery under ambient conditions. Increases in disturbance strength resulted in gradually stronger changes in bacterial community composition and functions. In the disturbance intensity experiment, the sensitivity to the disturbance and the ability of recovery differed between different functions. In the disturbance frequency experiment, effects on the different functions were more consistent and recovery was not observed. Moreover, in case of the intensity experiment, there was also a time lag in the responses of community composition and functions, with functional responses being faster than compositional ones. To summarize, our study shows that disturbance strength has the potential to change the functional performance and composition of bacterial communities. It further highlights that the overall effects, rates of recovery and the degree of congruence in the response patterns of community composition and functioning along disturbance gradients depend on the type of function and the character of the disturbance.  相似文献   

20.
The diversity and distribution of bacterial and archaeal communities in four different water flooding oil reservoirs with different geological properties were investigated using 16S rDNA clone library construction method. Canonical correspondence analysis was used to analyze microbial community clustering and the correlation with environmental factors. The results indicated that the diversity and abundance in the bacterial communities were significantly higher than the archaeal communities, while both of them had high similarity within the communities respectively. Phylogenetic analysis showed that of compositions of bacterial communities were distinctly different both at phylum and genus level. Proteobacteria dominated in each bacterial community, ranging from 61.35 to 75.83?%, in which α-proteobacteria and γ-proteobacteria were the main groups. In comparison to bacterial communities, the compositions of archaeal communities were similar at phylum level, while varied at genus level, and the dominant population was Methanomicrobia, ranging from 65.91 to 92.74?% in the single oil reservoir. The factor that most significantly influenced the microbial communities in these reservoirs was found to be temperature. Other environmental factors also influenced the microbial communities but not significantly. It is therefore assumed that microbial communities are formed by an accumulated effect of several factors. These results are essential for understanding ecological environment of the water flooding oil reservoirs and providing scientific guidance to the performance of MEOR technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号