首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dear Editor,Myocardial infarction(MI)is the irreversible cardiomyocyte death resulting from prolonged oxygen deprivation due to obstructed blood supply(ischemia),leading to contractile dysfunction and cardiac remodeling.In recent decades,stem cell transplantation has been extensively investigated for the repair of injured heart in animal studies and clinical trials(Kanelidis et al.,2017;Gyongyosi et al.,2018).  相似文献   

2.

Background

The heart produces apolipoprotein-B containing lipoproteins (apoB) whose function is not well understood. The aim of this study was to evaluate importance of myocardial apoB for cardiac function, structure and survival in myocardial infarction (MI) and heart failure (HF).

Methods and results

MI was induced in mice (n = 137) and myocardial apoB content was measured at 30 min, 3, 6, 24, 48, 120 h and 8 weeks post-MI. Transgenic mice overexpressing apoB (n = 27) and genetically matched controls (n = 27) were used to study the effects of myocardial apoB on cardiac function, remodeling, arrhythmias and survival after MI. Echocardiography was performed at rest and stress conditions at baseline, 2, 4 and 6 week post-MI and cumulative survival rate was registered. The myocardial apoB content increased both in the injured and the remote myocardium (p < 0.05) in response to ischemic injury. ApoB mice had 2-fold higher survival rate (p < 0.05) and better systolic function (p < 0.05) post-MI.

Conclusion

Overexpression of apoB in the heart increases survival and improves cardiac function after acute MI. Myocardial apoB may be an important cardioprotective system in settings such as myocardial ischemia and HF.  相似文献   

3.
Nogo-B (Reticulon 4B) is reportedly a regulator of angiogenesis during the development and progression of cancer. However, whether Nogo-B regulates angiogenesis and post-myocardial infarction (MI) cardiac repair remains elusive. In the present study, we aimed to explore the role and underlying mechanisms of Nogo-B in cardiac repair during MI. We observed an increased expression level of Nogo-B in the heart of mouse MI models, as well as in isolated cardiac microvascular endothelial cells (CMECs). Moreover, Nogo-B was significantly upregulated in CMECs exposed to oxygen-glucose deprivation (OGD). Nogo-B overexpression in the endothelium via cardiotropic adeno-associated virus serotype 9 (AAV9) with the mouse endothelial-specific promoter Tie2 improved heart function, reduced scar size, and increased angiogenesis. RNA-seq data indicated that Notch signaling is a deregulated pathway in isolated CMECs along the border zone of the infarct with Nogo-B overexpression. Mechanistically, Nogo-B activated Notch1 signaling and upregulated Hes1 in the MI hearts. Inhibition of Notch signaling using a specific siRNA and γ-secretase inhibitor abolished the promotive effects of Nogo-B overexpression on network formation and migration of isolated cardiac microvascular endothelial cells (CMECs). Furthermore, endothelial Notch1 heterozygous deletion inhibited Nogo-B-induced cardioprotection and angiogenesis in the MI model. Collectively, this study demonstrates that Nogo-B is a positive regulator of angiogenesis by activating the Notch signaling pathway, suggesting that Nogo-B is a novel molecular target for ischemic disease.Subject terms: Heart failure, Ischaemia  相似文献   

4.
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.  相似文献   

5.
6.

Background

Expanded endothelial progenitor cells (eEPC) improve global left ventricular function in experimental myocardial infarction (MI). Erythropoietin beta (EPO) applied together with eEPC may improve regional myocardial function even further by anti-apoptotic and cardioprotective effects. Aim of this study was to evaluate intramyocardial application of eEPCs and EPO as compared to eEPCs or EPO alone in experimental MI.

Methods and Results

In vitro experiments revealed that EPO dosed-dependently decreased eEPC and leukocyte apoptosis. Moreover, in the presence of EPO mRNA expression in eEPC of proangiogenic and proinflammatory mediators measured by TaqMan PCR was enhanced. Experimental MI was induced by ligation and reperfusion of the left anterior descending coronary artery of nude rats (n = 8-9). After myocardial transplantation of eEPC and EPO CD68+ leukocyte count and vessel density were enhanced in the border zone of the infarct area. Moreover, apoptosis of transplanted CD31 + TUNEL + eEPC was decreased as compared to transplantation of eEPCs alone. Regional wall motion of the left ventricle was measured using Magnetic Resonance Imaging. After injection of eEPC in the presence of EPO regional wall motion significantly improved as compared to injection of eEPCs or EPO alone.

Conclusion

Intramyocardial transplantation of eEPC in the presence of EPO during experimental MI improves regional wall motion. This was associated with an increased local inflammation, vasculogenesis and survival of the transplanted cells. Local application of EPO in addition to cell therapy may prove beneficial in myocardial remodeling.
  相似文献   

7.
We studied whether apelin-13 is cardioprotective against ischemia/reperfusion injury if given as either a pre- or postconditioning mimetic and whether the improved postischemic mechanical recovery induced by apelin-13 depends only on the reduced infarct size or also on a recovery of function of the viable myocardium. We also studied whether nitric oxide (NO) is involved in apelin-induced protection and whether the reported ischemia-induced overexpression of the apelin receptor (APJ) plays a role in cardioprotection. Langendorff-perfused rat hearts underwent 30 min of global ischemia and 120 min of reperfusion. Left ventricular pressure was recorded. Infarct size and lactate dehydrogenase release were determined to evaluate the severity of myocardial injury. Apelin-13 was infused at 0.5 μM concentration for 20 min either before ischemia or in early reperfusion, without and with NO synthase inhibition by N(G)-nitro-l-arginine (l-NNA). In additional experiments, before ischemia also 1 μM apelin-13 was tested. APJ protein level was measured before and after ischemia. Whereas before ischemia apelin-13 (0.5 and 1.0 μM) was ineffective, after ischemia it reduced infarct size from 54 ± 2% to 26 ± 4% of risk area (P < 0.001) and limited the postischemic myocardial contracture (P < 0.001). l-NNA alone increased postischemic myocardial contracture. This increase was attenuated by apelin-13, which, however, was unable to reduce infarct size. Ischemia increased APJ protein level after 15-min perfusion, i.e., after most of reperfusion injury has occurred. Apelin-13 protects the heart only if given after ischemia. In this protection NO plays an important role. Apelin-13 efficiency as postconditioning mimetic cannot be explained by the increased APJ level.  相似文献   

8.
Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSCs) into the acutely ischemic myocardium. Two weeks postinfarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were twofold stiffer than myocardium from noninfarcted animals but softer than myocardium from vehicle-treated infarcted animals. After 8 wk, the following variables were evaluated: MSC engraftment and left ventricular geometry by histological methods, cardiac function with a pressure-volume conductance catheter, myocardial fibrosis by Masson Trichrome staining, vascularity by immunohistochemistry, and apoptosis by TdT-mediated dUTP nick-end labeling assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated postinfarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.  相似文献   

9.
10.
Neutrophils are key effector cells of the innate immune system, serving as a first line of defense in the response to injury and playing essential roles in the wound healing process. Following myocardial infarction (MI), neutrophils infiltrate into the infarct region to propagate inflammation and begin the initial phase of cardiac wound repair. Pro-inflammatory neutrophils release proteases to degrade extracellular matrix (ECM), a necessary step for the removal of necrotic myocytes as a prelude for scar formation. Neutrophils transition their phenotype over time to regulate MI inflammation resolution and stabilize scar formation. Neutrophils contribute to the evolution from inflammation to resolution and scar formation by serving anti-inflammatory and repair functions. As anti-inflammatory cells, neutrophils contribute ECM proteins during scar formation, in particular fibronectin, galectin-3, and vimentin. The diverse and polarizing functions that contribute to MI wound repair make this innate immune cell a viable target to improve MI outcomes. Thus, understanding the signaling involved in neutrophil physiology in the context of MI may help to identify novel therapeutic targets.  相似文献   

11.
Endothelial progenitor cells (EPCs) are a subset of the total mononuclear cell population (tMNCs) that possess an enhanced potential for differentiation within the endothelial‐cell lineage. Typically, EPCs are selected from tMNCs via the expression of both hematopoietic stem‐cell markers and endothelial‐cell markers, such as CD34, or by culturing tMNCs in media selective for endothelial cells. Both EPCs and tMNCs participate in vascular growth and regeneration, and their potential use for treatment of myocardial injury or disease has been evaluated in early‐phase clinical studies. Direct comparisons between EPCs and tMNCs are rare, but the available evidence appears to favor EPCs, particularly CD34+ cells, and the potency of EPCs may be increased as much as 30‐fold through genetic modification. However, these observations must be interpreted with caution because clinical investigations of EPC therapy are ongoing. We anticipate that with continued development, EPC therapy will become a safe and effective treatment option for patients with acute myocardial infarction or chronic ischemic disease. J. Cell. Physiol. 219: 235–242, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
BACKGROUND: Multipotent adult progenitor cells (MAPC) comprise interesting candidates for myocardial regeneration because of a broad differentiation ability and immune privilege. We aimed to compare the improvement of cardiac function by syngeneic and allogeneic MAPC produced on a large scale using a platform optimized from MAPC research protocols. METHODS: Myocardial infarction was induced in Lewis rats by direct left anterior descending ligation followed immediately by direct injection into the infarct border zone of either Sprague-Dawley or Lewis MAPC from large-scale expansions. Echocardiography was performed to evaluate improvement in cardiac function, and immunohistochemistry was performed to identify MAPC within the infarct zone. RESULTS: Significant increases were observed in functional performance in animals transplanted with expanded MAPC compared with saline controls, with no significant differences between the syngeneic and allogeneic groups. Immunostaining demonstrated significant engraftment of expanded MAPC at 1 day after acute myocardial infarction, with <10% of either syngeneic or allogeneic cells remaining at 6 weeks. At this point there was no evidence of myocardial regeneration. However, a significant increase in vascular density within the infarct zone in MAPC-transplanted animals was observed, and MAPC were found to produce high levels of VEGF in culture. DISCUSSION: These findings support a model in which delivery of expanded MAPC following acute myocardial infarction results in improvement in cardiac function because of paracrine effects resulting in vascular density increases, as well as potentially other trophic effects, supporting newly injured cardiac myocytes. Thus transplantation with MAPC may represent a promising therapeutic strategy with application in the stimulation of neovascularization in ischemic heart disease.  相似文献   

13.
Russo FP  Parola M 《Cytotherapy》2011,13(2):135-144
Mammalian liver has a unique capacity to regenerate following resection or injury, and recovery of liver mass is mainly through proliferation of remaining adult hepatocytes. However, in pathologic conditions, especially during acute liver failure (ALF) and advanced stages of chronic liver disease (CLD), regeneration eventually fails and orthothopic liver transplantation (OLT) represents the only curative approach. The clinical scenario of a world-wide increasing incidence of end-stage CLD and an associated lack of organ availability has led several laboratories to explore the feasibility and efficiency of experimental alternatives to OLT involving cellular therapy. This review presents experimental and clinical studies performed in the last 10-15 years where adult and embryonic hepatocytes, hepatic stem/progenitor cells and extrahepatic stem cells have been used as transplantable cell sources.  相似文献   

14.
Cardiovascular disease is the leading cause of death in individuals over 60 years old. Aging is associated with an increased prevalence of coronary artery disease and a poorer prognosis following acute myocardial infarction (MI). With age, senescent cells accumulate in tissues, including the heart, and contribute to age‐related pathologies. However, the role of senescence in recovery following MI has not been investigated. In this study, we demonstrate that treatment of aged mice with the senolytic drug, navitoclax, eliminates senescent cardiomyocytes and attenuates profibrotic protein expression in aged mice. Importantly, clearance of senescent cells improved myocardial remodelling and diastolic function as well as overall survival following MI. These data provide proof‐of‐concept evidence that senescent cells are major contributors to impaired function and increased mortality following MI and that senolytics are a potential new therapeutic avenue for MI.  相似文献   

15.
Transgenic over expression of apolipoprotein A-I (ApoA-I) the major structural apolipoprotein of HDL appears to convey the most consistent and strongest anti atherogenic effect observed in animal models so far. We tested the hypothesis that ApoA-I mediates its cardio protective effects additionally through ApoA-I induced differentiation of bone marrow-derived progenitor cells in vitro. This study demonstrates that lineage negative bone marrow cells (lin(-) BMCs) alter and differentiate in response to free ApoA-I. We find that lin(-) BMCs in culture treated with recombinant free ApoA-I at a concentration of 0.4 microM are twice as large in size and have altered cell morphology compared to untreated cells; untreated cells retain the original spheroid morphology. Further, the total number of CD31 positive cells in the ApoA-I treated population consistently increased by two fold. This phenotype was significantly reduced in untreated cells and points towards a novel ApoA-I dependent differentiation. A protein lacking its best lipid-binding region (ApoA-I Delta 10) did not stimulate any changes in the lin(-)BMCs indicating that ApoA-I may mediate its effects by regulating cholesterol efflux. The increased CD31 correlates with an increased ability of the lin(-) BMCs to adhere to both fibronectin and mouse brain endothelial cells. Our results provide the first evidence that exogenous free ApoA-I has the capacity to change the characteristics of progenitor cell populations and suggests a novel mechanism by which HDL may mediate its cardiovascular benefits.  相似文献   

16.
《Peptides》2012,33(12):2436-2443
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, is associated with vascular dysfunction. The polypeptide apelin mediates two major actions on blood vessels. However, their combined effects on vascular function are not fully understood. The present study aimed to determine the effect of apelin-13 on myosin light chain (MLC) phosphorylation in vascular smooth muscle cells (VSMCs) under ADMA-induced endothelial leakage conditions. To assess the increased permeability induced by ADMA, human umbilical vein endothelium cells (HUVECs) were plated in transwell dishes. The FITC-dextran flux and FITC-apelin-13 flux through the endothelial monolayer were measured. To examine the effect of leakage of apelin-13 on MLC phosphorylation in HUVSMCs, transwell dishes were used to establish a coculture system with HUVECs in upper chambers and HUVSMCs in lower chambers. Western blot was performed to assess the phospho-MLC levels. ADMA increased endothelial permeability in a concentration- and time-dependent manner, accompanied by actin stress fiber assembly and intercellular gap formation. When HUVECs were treated with ADMA, the permeability to both macromolecular dextran and micromolecular apelin-13 increased significantly. Both p38 MAPK inhibitor and NADPH oxidase inhibitor could prevent HUVECs from the increased permeability, and the changes of cytoskeleton and intercellular junction, which were induced by ADMA. Apelin-13 passed through the ADMA-stimulated endothelial monolayer and increased the expression of phospho-MLC in VSMCs. These results suggest that ADMA increases endothelial permeability, which may involve the p38 MAPK and NADPH oxidase pathway. Apelin-13 can pass through the damaged endothelial barrier, and acts directly on VSMCs to increase MLC phosphorylation.  相似文献   

17.
Wang LY  Zhang DL  Zheng JF  Zhang Y  Zhang QD  Liu WH 《Peptides》2011,32(12):2436-2443
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, is associated with vascular dysfunction. The polypeptide apelin mediates two major actions on blood vessels. However, their combined effects on vascular function are not fully understood. The present study aimed to determine the effect of apelin-13 on myosin light chain (MLC) phosphorylation in vascular smooth muscle cells (VSMCs) under ADMA-induced endothelial leakage conditions. To assess the increased permeability induced by ADMA, human umbilical vein endothelium cells (HUVECs) were plated in transwell dishes. The FITC-dextran flux and FITC-apelin-13 flux through the endothelial monolayer were measured. To examine the effect of leakage of apelin-13 on MLC phosphorylation in HUVSMCs, transwell dishes were used to establish a coculture system with HUVECs in upper chambers and HUVSMCs in lower chambers. Western blot was performed to assess the phospho-MLC levels. ADMA increased endothelial permeability in a concentration- and time-dependent manner, accompanied by actin stress fiber assembly and intercellular gap formation. When HUVECs were treated with ADMA, the permeability to both macromolecular dextran and micromolecular apelin-13 increased significantly. Both p38 MAPK inhibitor and NADPH oxidase inhibitor could prevent HUVECs from the increased permeability, and the changes of cytoskeleton and intercellular junction, which were induced by ADMA. Apelin-13 passed through the ADMA-stimulated endothelial monolayer and increased the expression of phospho-MLC in VSMCs. These results suggest that ADMA increases endothelial permeability, which may involve the p38 MAPK and NADPH oxidase pathway. Apelin-13 can pass through the damaged endothelial barrier, and acts directly on VSMCs to increase MLC phosphorylation.  相似文献   

18.
This paper discusses the current data concerning the results of major clinical trials using bone marrow-derived and peripheral blood-derived stem/progenitor cells in treatment of patients with acute myocardial infarction (AMI) and depressed left ventricular ejection fraction. In all major trials (TOPCARE-AMI, BOOST), the primary outcome measure was increase in left ventricular systolic function (LVEF) and left ventricle remodeling. The most consistent finding is the significant increase in LVEF. Some trials suggest also reduction of left ventricular remodeling. Although the absolute LVEF increase is small (6-9%), it may substantially contribute to the improvement of global LV contractility. None of the studies in AMI patients treated with intracoronary infusion of progenitor cells revealed excess risk of arrythmia, restenosis or other adverse effects attributable to the therapy. The exact mechanism of improved myocardial contractile function remains unknown, however, there are several possible explanations: therapeutic angiogenesis improving the blood supply to the infarct border zone, paracrine modulation of myocardial fibrosis and remodeling (e.g. inhibition of myocyte apoptosis) and transdifferentiation of stem/progenitor cells into functional cardiomyocytes. No study showed the superiority of the particular subpopulation of autologous progenitor cells in terms of left ventricular function improvement in AMI. In fact, most of the clinical trials used the whole population of mononuclear bone marrow-derived progenitor cells, peripheral blood derived progenitor cells (endothelial progenitors).  相似文献   

19.
20.
YAP1 increases organ size and expands undifferentiated progenitor cells   总被引:6,自引:0,他引:6  
The mechanisms that regulate mammalian organ size are poorly understood. It is unclear whether the pathways that control organ size also impinge on stem/progenitor cells. A highly expressed gene in stem cells is YAP1, the ortholog of Drosophila Yorkie, a downstream component of the Hippo pathway. Mutations in components of this pathway produce tissue overgrowth phenotypes in the fly whereas mammalian orthologs, like salvador, merlin, LATS, and YAP1, have been implicated in tumorigenesis. We report here that YAP1 increases organ size and causes aberrant tissue expansion in mice. YAP1 activation reversibly increases liver size more than 4-fold. In the intestine, expression of endogenous YAP1 is restricted to the progenitor/stem cell compartment, and activation of YAP1 expands multipotent undifferentiated progenitor cells, which differentiate upon cessation of YAP1 expression. YAP1 stimulates Notch signaling, and administration of gamma-secretase inhibitors suppressed the intestinal dysplasia caused by YAP1. Human colorectal cancers expressing higher levels of YAP1 share molecular aspects with YAP1-induced dysplastic growth in the mouse. Our data show that the Hippo signaling pathway regulates organ size in mammals and can act on stem cell compartments, indicating a potential link between stem/progenitor cells, organ size, and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号