共查询到20条相似文献,搜索用时 15 毫秒
1.
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function. 相似文献
2.
Wayne Croft Claire Hill Eilish McCann Michael Bond Manuel Esparza-Franco Jeannette Bennett David Rand John Davey Graham Ladds 《The Journal of biological chemistry》2013,288(38):27327-27342
G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways. 相似文献
3.
Shim H Wang CT Chen YL Chau VQ Fu KG Yang J McQuiston AR Fisher RA Chen CK 《The Journal of biological chemistry》2012,287(18):14873-14879
Two members of the R7 subfamily of regulators of G protein signaling, RGS7 and RGS11, are present at dendritic tips of retinal depolarizing bipolar cells (DBCs). Their involvement in the mGluR6/Gα(o)/TRPM1 pathway that mediates DBC light responses has been implicated. However, previous genetic studies employed an RGS7 mutant mouse that is hypomorphic, and hence the exact role of RGS7 in DBCs remains unclear. We have made a true RGS7-null mouse line with exons 6-8 deleted. The RGS7(-/-) mouse is viable and fertile but smaller in body size. Electroretinogram (ERG) b-wave implicit time in young RGS7(-/-) mice is prolonged at eye opening, but the phenotype disappears at 2 months of age. Expression levels of RGS6 and RGS11 are unchanged in RGS7(-/-) retina, but the Gβ5S level is significantly reduced. By characterizing a complete RGS7 and RGS11 double knock-out (711dKO) mouse line, we found that Gβ5S expression in the retinal outer plexiform layer is eliminated, as is the ERG b-wave. Ultrastructural defects akin to those of Gβ5(-/-) mice are evident in 711dKO mice. In retinas of mice lacking RGS6, RGS7, and RGS11, Gβ5S is undetectable, whereas levels of the photoreceptor-specific Gβ5L remain unchanged. Whereas RGS6 alone sustains a significant amount of Gβ5S expression in retina, the DBC-related defects in Gβ5(-/-) mice are caused solely by a combined loss of RGS7 and RGS11. Our data support the notion that the role of Gβ5 in the retina, and likely in the entire nervous system, is mediated exclusively by R7 RGS proteins. 相似文献
4.
Nicole Wydeven Ekaterina Posokhova Zhilian Xia Kirill A. Martemyanov Kevin Wickman 《The Journal of biological chemistry》2014,289(4):2440-2449
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K+ channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4−/−, Rgs6−/−, and Rgs4−/−:Rgs6−/− mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6−/− mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6−/− and Gβ5−/− mice, suggest that the partial rescue of phenotypes in Rgs4−/−:Rgs6−/− mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice. 相似文献
5.
Nobuaki Hirota Daisuke Yasuda Tomomi Hashidate Teruyasu Yamamoto Satoshi Yamaguchi Teruyuki Nagamune Takahide Nagase Takao Shimizu Motonao Nakamura 《The Journal of biological chemistry》2010,285(8):5931-5940
Several residues are conserved in the transmembrane domains (TMs) of G-protein coupled receptors. Here we demonstrate that a conserved proline, Pro247, in TM6 of platelet-activating factor receptor (PAFR) is required for endoplasmic reticulum (ER) export and trafficking after agonist-induced internalization. Alanine-substituted mutants of the conserved residues of PAFRs, including P247A, were retained in the ER. Because a PAFR antagonist, Y-24180, acted as a pharmacological chaperone to rescue ER retention, this retention is due to misfolding of PAFR. Methylcarbamyl (mc)-PAF, a PAFR agonist, did not increase the cell surface expression of P247A, even though another ER-retained mutant, D63A, was effectively trafficked. Signaling and accumulation of the receptors in the early endosomes were observed in the mc-PAF-treated P247A-expressing cells, suggesting that P247A was trafficked to the cell surface by mc-PAF, and thereafter disappeared from the surface due to aberrant trafficking, e.g. enhanced internalization, deficiency in recycling, and/or accelerated degradation. The aberrant trafficking was confirmed with a sortase-A-mediated method for labeling cell surface proteins. These results demonstrate that the conserved proline in TM6 is crucial for intracellular trafficking of PAFR. 相似文献
6.
Phosphatidylinositol Transfer Protein, Cytoplasmic 1 (PITPNC1) Binds and Transfers Phosphatidic Acid
K Garner AN Hunt G Koster P Somerharju E Groves M Li P Raghu R Holic S Cockcroft 《The Journal of biological chemistry》2012,287(38):32263-32276
Phosphatidylinositol transfer proteins (PITPs) are versatile proteins required for signal transduction and membrane traffic. The best characterized mammalian PITPs are the Class I PITPs, PITPα (PITPNA) and PITPβ (PITPNB), which are single domain proteins with a hydrophobic cavity that binds a phosphatidylinositol (PI) or phosphatidylcholine molecule. In this study, we report the lipid binding properties of an uncharacterized soluble PITP, phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) (alternative name, RdgBβ), of the Class II family. We show that the lipid binding properties of this protein are distinct to Class I PITPs because, besides PI, RdgBβ binds and transfers phosphatidic acid (PA) but hardly binds phosphatidylcholine. RdgBβ when purified from Escherichia coli is preloaded with PA and phosphatidylglycerol. When RdgBβ was incubated with permeabilized HL60 cells, phosphatidylglycerol was released, and PA and PI were now incorporated into RdgBβ. After an increase in PA levels following activation of endogenous phospholipase D or after addition of bacterial phospholipase D, binding of PA to RdgBβ was greater at the expense of PI binding. We propose that RdgBβ, when containing PA, regulates an effector protein or can facilitate lipid transfer between membrane compartments. 相似文献
7.
Buxin Chen David P. Siderovski Richard R. Neubig Mark A. Lawson JoAnn Trejo 《The Journal of biological chemistry》2014,289(3):1580-1591
The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of “regulator of G protein signaling” (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 420AKKAA424 mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins. 相似文献
8.
Ankyrin-G (AnkG) coordinates protein composition of diverse membrane domains, including epithelial lateral membranes and neuronal axon initial segments. However, how AnkG itself localizes to these membrane domains is not understood. We report that AnkG remains on the plasma membrane in Madin-Darby canine kidney (MDCK) cells grown in low calcium, although these cells lack apical-basal polarity and exhibit loss of plasma membrane association of AnkG partners, E-cadherin and β2-spectrin. We subsequently demonstrate using mutagenesis and mass spectrometry that AnkG is S-palmitoylated exclusively at Cys-70, which is located in a loop of the first ankyrin repeat and is conserved in the vertebrate ankyrin family. Moreover, C70A mutation abolishes membrane association of 190-kDa AnkG in MDCK cells grown in low calcium. C70A 190-kDa AnkG fails to restore biogenesis of epithelial lateral membranes in MDCK cells depleted of endogenous AnkG. In addition, C70A 270-kDa AnkG fails to cluster at the axon initial segment of AnkG-depleted cultured hippocampal neurons and fails to recruit neurofascin as well as voltage-gated sodium channels. These effects of C70A mutation combined with evidence for its S-palmitoylation are consistent with a requirement of palmitoylation for targeting and function of AnkG in membrane domain biogenesis at epithelial lateral membranes and neuronal axon initial segments. 相似文献
9.
Yukari Okamoto Joshua David Bernstein Sojin Shikano 《The Journal of biological chemistry》2013,288(13):9189-9199
Cell surface density of G protein-coupled receptors (GPCRs) is controlled by dynamic molecular interactions that often involve recognition of the distinct sequence signals on the cargo receptors. We reported previously that the RXR-type dibasic motif in the distal C-terminal tail of an HIV coreceptor GPR15 negatively regulates the cell surface expression by mediating the coatomer protein I complex-dependent retrograde transport to the endoplasmic reticulum (ER). Here we demonstrate that another pair of basic residues (Arg310-Arg311) in the membrane-proximal region of the C-terminal tail plays a pivotal role in mediating the anterograde trafficking of GPR15. The Ala mutation of the C-terminal membrane-proximal basic residues (MPBRs) (R310/311A) abolished the O-glycosylation and cell surface expression of GPR15. The subcellular fractionation and immunocytochemistry assays indicated that the R310/311A mutant was more localized in the ER but much less in the trans-Golgi when compared with the wild-type GPR15, suggesting the positive role of Arg310-Arg311 in the ER-to-Golgi transport of GPR15. Sequence analysis on human GPCRs showed that the basic residues are frequent in the membrane-proximal region of the C-terminal tail. Similar to GPR15, mutation of the C-terminal MPBRs resulted in a marked reduction of the cell surface expression in multiple different GPCRs. Our results suggest that the C-terminal MPBRs are critically involved in mediating the anterograde trafficking of a broad range of membrane proteins, including GPCRs. 相似文献
10.
Regulated endocytic trafficking is the central mechanism facilitating a variety of neuromodulatory events, by dynamically controlling receptor, ion channel, and transporter cell surface presentation on a minutes time scale. There is a broad diversity of mechanisms that control endocytic trafficking of individual proteins. Studies investigating the molecular underpinnings of trafficking have primarily relied upon surface biotinylation to quantitatively measure changes in membrane protein surface expression in response to exogenous stimuli and gene manipulation. However, this approach has been mainly limited to cultured cells, which may not faithfully reflect the physiologically relevant mechanisms at play in adult neurons. Moreover, cultured cell approaches may underestimate region-specific differences in trafficking mechanisms. Here, we describe an approach that extends cell surface biotinylation to the acute brain slice preparation. We demonstrate that this method provides a high-fidelity approach to measure rapid changes in membrane protein surface levels in adult neurons. This approach is likely to have broad utility in the field of neuronal endocytic trafficking. 相似文献
11.
Eugene L. Kang Barbara Biscaro Fabrizio Piazza Giuseppina Tesco 《The Journal of biological chemistry》2012,287(51):42867-42880
β-Site amyloid precursor protein-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as β-secretase. BACE1 is targeted through the secretory pathway to the plasma membrane and then is internalized to endosomes. Sorting of membrane proteins to the endosomes and lysosomes is regulated by the interaction of signals present in their carboxyl-terminal fragment with specific trafficking molecules. The BACE1 carboxyl-terminal fragment contains a di-leucine sorting signal (495DDISLL500) and a ubiquitination site at Lys-501. Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not affect the rate of endocytosis but produces BACE1 stabilization and accumulation of BACE1 in early and late endosomes/lysosomes as well as at the cell membrane. In contrast, the disruption of the di-leucine motif (BACE1LLAA) greatly impairs BACE1 endocytosis and produces a delayed retrograde transport of BACE1 to the trans-Golgi network (TGN) and a delayed delivery of BACE1 to the lysosomes, thus decreasing its degradation. Moreover, the combination of the lack of ubiquitination at Lys-501 and the disruption of the di-leucine motif (BACE1LLAA/KR) produces additive effects on BACE1 stabilization and defective internalization. Finally, BACE1LLAA/KR accumulates in the TGN, while its levels are decreased in EEA1-positive compartments indicating that both ubiquitination at Lys-501 and the di-leucine motif are necessary for the trafficking of BACE1 from the TGN to early endosomes. Our studies have elucidated a differential role for the di-leucine motif and ubiquitination at Lys-501 in BACE1 endocytosis, trafficking, and degradation and suggest the involvement of multiple adaptor molecules. 相似文献
12.
ClipR-59 is a membrane-associated protein and has been implicated in membrane signaling and vesicle trafficking. Recently, we have identified ClipR-59 as an Akt-interacting protein, and we have found that, by interacting with Akt, ClipR-59 modulates Akt subcellular compartmentalization and Akt substrate AS160 phosphorylation, thereby promoting Glut4 membrane translocation. Here, we have further investigated the regulatory effects of ClipR-59 on AS160 phosphorylation and subsequent adipocyte glucose transport. Our data showed that ClipR-59 interacted with AS160, which was mediated by the ankyrin repeats of ClipR-59 and regulated by insulin signaling. Moreover, the data also demonstrated that the interaction of ClipR-59 with AS160 was required for ClipR-59 to modulate Glut4 membrane translocation as ΔANK-ClipR-59, an AS160 interaction-defective mutant, failed to promote AS160 phosphorylation, Glut4 membrane translocation, and glucose transport induced by insulin in 3T3-L1 adipocytes. Because ClipR-59 also interacts with Akt and enhances the interaction between Akt and AS160, we suggest that ClipR-59 functions as a scaffold protein to facilitate Akt-mediated AS160 phosphorylation, thereby regulating glucose transport. 相似文献
13.
14.
An X. Tran Changjiang Dong Chris Whitfield 《The Journal of biological chemistry》2010,285(43):33529-33539
LptC is a conserved bitopic inner membrane protein from Escherichia coli involved in the export of lipopolysaccharide from its site of synthesis in the cytoplasmic membrane to the outer membrane. LptC forms a complex with the ATP-binding cassette transporter, LptBFG, which is thought to facilitate the extraction of lipopolysaccharide from the inner membrane and release it into a translocation pathway that includes the putative periplasmic chaperone LptA. Cysteine modification experiments established that the catalytic domain of LptC is oriented toward the periplasm. The structure of the periplasmic domain is described at a resolution of 2.2-Å from x-ray crystallographic data. The periplasmic domain of LptC consists of a twisted boat structure with two β-sheets in apposition to each other. The β-sheets contain seven and eight antiparallel β-strands, respectively. This structure bears a high degree of resemblance to the crystal structure of LptA. Like LptA, LptC binds lipopolysaccharide in vitro. In vitro, LptA can displace lipopolysaccharide from LptC (but not vice versa), consistent with their locations and their proposed placement in a unidirectional export pathway. 相似文献
15.
Sylvain Feliciangeli Magalie P. Tardy Guillaume Sandoz Franck C. Chatelain Richard Warth Jacques Barhanin Sa?d Bendahhou Florian Lesage 《The Journal of biological chemistry》2010,285(7):4798-4805
Tandem of P domains in a weak inwardly rectifying K+ channel 1 (TWIK1) is a K+ channel that produces unusually low levels of current. Replacement of lysine 274 by a glutamic acid (K274E) is associated with stronger currents. This mutation would prevent conjugation of a small ubiquitin modifier peptide to Lys-274, a mechanism proposed to be responsible for channel silencing. However, we found no biochemical evidence of TWIK1 sumoylation, and we showed that the conservative change K274R did not increase current, suggesting that K274E modifies TWIK1 gating through a charge effect. Now we rule out an eventual effect of K274E on TWIK1 trafficking, and we provide convincing evidence that TWIK1 silencing results from its rapid retrieval from the cell surface. TWIK1 is internalized via a dynamin-dependent mechanism and addressed to the recycling endosomal compartment. Mutation of a diisoleucine repeat located in its cytoplasmic C terminus (I293A,I294A) stabilizes TWIK1 at the plasma membrane, resulting in robust currents. The effects of I293A,I294A on channel trafficking and of K274E on channel activity are cumulative, promoting even more currents. Activation of serotoninergic receptor 5-HT1R or adrenoreceptor α2A-AR stimulates TWIK1 but has no effect on TWIK1I293A,I294A, suggesting that Gi protein activation is a physiological signal for increasing the number of active channels at the plasma membrane. 相似文献
16.
Eric C. Greenwald John M. Redden Kimberly L. Dodge-Kafka Jeffrey J. Saucerman 《The Journal of biological chemistry》2014,289(4):2353-2360
Scaffold proteins localize two or more signaling enzymes in close proximity to their downstream effectors. A-kinase-anchoring proteins (AKAPs) are a canonical family of scaffold proteins known to bind protein kinase A (PKA) and other enzymes. Several AKAPs have been shown to accelerate, amplify, and specify signal transduction to dynamically regulate numerous cellular processes. However, there is little theory available to mechanistically explain how signaling on protein scaffolds differs from solution biochemistry. In our present study, we propose a novel kinetic mechanism for enzymatic reactions on protein scaffolds to explain these phenomena, wherein the enzyme-substrate-scaffold complex undergoes stochastic state switching to reach an active state. This model predicted anchored enzymatic reactions to be accelerated, amplified, and insulated from inhibition compared with those occurring in solution. We exploited a direct interaction between protein kinase C (PKC) and AKAP7α as a model to validate these predictions experimentally. Using a genetically encoded PKC activity reporter, we found that both the strength and speed of substrate phosphorylation were enhanced by AKAP7α. PKC tethered to AKAP7α was less susceptible to inhibition from the ATP-competitive inhibitor Gö6976 and the substrate-competitive inhibitor PKC 20-28, but not the activation-competitive inhibitor calphostin C. Model predictions and experimental validation demonstrated that insulation is a general property of scaffold tethering. Sensitivity analysis indicated that these findings may be applicable to many other scaffolds as well. Collectively, our findings provide theoretical and experimental evidence that scaffold proteins can amplify, accelerate, and insulate signal transduction. 相似文献
17.
X Zhou I Wulfsen M Korth H McClafferty R Lukowski MJ Shipston P Ruth D Dobrev T Wieland 《The Journal of biological chemistry》2012,287(38):32161-32171
Large-conductance, calcium- and voltage-gated potassium (BK) channels play an important role in cellular excitability by controlling membrane potential and calcium influx. The stress axis regulated exon (STREX) at splice site 2 inverts BK channel regulation by protein kinase A (PKA) from stimulatory to inhibitory. Here we show that palmitoylation of STREX controls BK channel regulation also by protein kinase C (PKC). In contrast to the 50% decrease of maximal channel activity by PKC in the insertless (ZERO) splice variant, STREX channels were completely resistant to PKC. STREX channel mutants in which Ser(700), located between the two regulatory domains of K(+) conductance (RCK) immediately downstream of the STREX insert, was replaced by the phosphomimetic amino acid glutamate (S700E) showed a ~50% decrease in maximal channel activity, whereas the S700A mutant retained its normal activity. BK channel inhibition by PKC, however, was effectively established when the palmitoylation-mediated membrane-anchor of the STREX insert was removed by either pharmacological inhibition of palmitoyl transferases or site-directed mutagenesis. These findings suggest that STREX confers a conformation on BK channels where PKC fails to phosphorylate and to inhibit channel activity. Importantly, PKA which inhibits channel activity by disassembling the STREX insert from the plasma membrane, allows PKC to further suppress the channel gating independent from voltage and calcium. Our results present an important example for the cross-talk between ion channel palmitoylation and phosphorylation in regulation of cellular excitability. 相似文献
18.
Baby G. Tholanikunnel Kusumam Joseph Karthikeyan Kandasamy Aleksander Baldys John R. Raymond Louis M. Luttrell Paul J. McDermott Daniel J. Fernandes 《The Journal of biological chemistry》2010,285(44):33816-33825
β2-Adrenergic receptors (β2-AR) are low abundance, integral membrane proteins that mediate the effects of catecholamines at the cell surface. Whereas the processes governing desensitization of activated β2-ARs and their subsequent removal from the cell surface have been characterized in considerable detail, little is known about the mechanisms controlling trafficking of neo-synthesized receptors to the cell surface. Since the discovery of the signal peptide, the targeting of the integral membrane proteins to plasma membrane has been thought to be determined by structural features of the amino acid sequence alone. Here we report that localization of translationally silenced β2-AR mRNA to the peripheral cytoplasmic regions is critical for receptor localization to the plasma membrane. β2-AR mRNA is recognized by the nucleocytoplasmic shuttling RNA-binding protein HuR, which silences translational initiation while chaperoning the mRNA-protein complex to the cell periphery. When HuR expression is down-regulated, β2-AR mRNA translation is initiated prematurely in perinuclear polyribosomes, leading to overproduction of receptors but defective trafficking to the plasma membrane. Our results underscore the importance of the spatiotemporal relationship between β2-AR mRNA localization, translation, and trafficking to the plasma membrane, and establish a novel mechanism whereby G protein-coupled receptor (GPCR) responsiveness is regulated by RNA-based signals. 相似文献
19.