共查询到20条相似文献,搜索用时 15 毫秒
1.
Kengo Inoue Yusuke Usami Yuji Ashikawa Haruko Noguchi Takashi Umeda Aiko Yamagami-Ashikawa Tadafumi Horisaki Hiromasa Uchimura Tohru Terada Shugo Nakamura Kentaro Shimizu Hiroshi Habe Hisakazu Yamane Zui Fujimoto Hideaki Nojiri 《Applied and environmental microbiology》2014,80(9):2821-2832
Carbazole 1,9a-dioxygenase (CARDO), a Rieske nonheme iron oxygenase (RO), is a three-component system composed of a terminal oxygenase (Oxy), ferredoxin, and a ferredoxin reductase. Oxy has angular dioxygenation activity against carbazole. Previously, site-directed mutagenesis of the Oxy-encoding gene from Janthinobacterium sp. strain J3 generated the I262V, F275W, Q282N, and Q282Y Oxy derivatives, which showed oxygenation capabilities different from those of the wild-type enzyme. To understand the structural features resulting in the different oxidation reactions, we determined the crystal structures of the derivatives, both free and complexed with substrates. The I262V, F275W, and Q282Y derivatives catalyze the lateral dioxygenation of carbazole with higher yields than the wild type. A previous study determined the crystal structure of Oxy complexed with carbazole and revealed that the carbonyl oxygen of Gly178 hydrogen bonds with the imino nitrogen of carbazole. In these derivatives, the carbazole was rotated approximately 15, 25, and 25°, respectively, compared to the wild type, creating space for a water molecule, which hydrogen bonds with the carbonyl oxygen of Gly178 and the imino nitrogen of carbazole. In the crystal structure of the F275W derivative complexed with fluorene, C-9 of fluorene, which corresponds to the imino nitrogen of carbazole, was oriented close to the mutated residue Trp275, which is on the opposite side of the binding pocket from the carbonyl oxygen of Gly178. Our structural analyses demonstrate that the fine-tuning of hydrophobic residues on the surface of the substrate-binding pocket in ROs causes a slight shift in the substrate-binding position that, in turn, favors specific oxygenation reactions toward various substrates. 相似文献
2.
3.
Qing Chen Cheng-Hong Wang Shi-Kai Deng Ya-Dong Wu Yi Li Li Yao Jian-Dong Jiang Xin Yan Jian He Shun-Peng Li 《Applied and environmental microbiology》2014,80(16):5078-5085
Sphingomonads DC-6 and DC-2 degrade the chloroacetanilide herbicides alachlor, acetochlor, and butachlor via N-dealkylation. In this study, we report a three-component Rieske non-heme iron oxygenase (RHO) system catalyzing the N-dealkylation of these herbicides. The oxygenase component gene cndA is located in a transposable element that is highly conserved in the two strains. CndA shares 24 to 42% amino acid sequence identities with the oxygenase components of some RHOs that catalyze N- or O-demethylation. Two putative [2Fe-2S] ferredoxin genes and one glutathione reductase (GR)-type reductase gene were retrieved from the genome of each strain. These genes were not located in the immediate vicinity of cndA. The four ferredoxins share 64 to 72% amino acid sequence identities to the ferredoxin component of dicamba O-demethylase (DMO), and the two reductases share 62 to 65% amino acid sequence identities to the reductase component of DMO. cndA, the four ferredoxin genes, and the two reductases genes were expressed in Escherichia coli, and the recombinant proteins were purified using Ni-affinity chromatography. The individual components or the components in pairs displayed no activity; the enzyme mixture showed N-dealkylase activities toward alachlor, acetochlor, and butachlor only when CndA-His6 was combined with one of the four ferredoxins and one of the two reductases, suggesting that the enzyme consists of three components, a homo-oligomer oxygenase, a [2Fe-2S] ferredoxin, and a GR-type reductase, and CndA has a low specificity for the electron transport component (ETC). The N-dealkylase utilizes NADH, but not NADPH, as the electron donor. 相似文献
4.
Tatiana N. Stekhanova Andrey V. Mardanov Ekaterina Y. Bezsudnova Vadim M. Gumerov Nikolai V. Ravin Konstantin G. Skryabin Vladimir O. Popov 《Applied and environmental microbiology》2010,76(12):4096-4098
Short-chain alcohol dehydrogenase, encoded by the gene Tsib_0319 from the hyperthermophilic archaeon Thermococcus sibiricus, was expressed in Escherichia coli, purified and characterized as an NADPH-dependent enantioselective oxidoreductase with broad substrate specificity. The enzyme exhibits extremely high thermophilicity, thermostability, and tolerance to organic solvents and salts.Alcohol dehydrogenases (ADHs; EC 1.1.1.1.) catalyze the interconversion of alcohols to their corresponding aldehydes or ketones by using different redox-mediating cofactors. NAD(P)-dependent ADHs, due to their broad substrate specificity and enantioselectivity, have attracted particular attention as catalysts in industrial processes (5). However, mesophilic ADHs are unstable at high temperatures, sensitive to organic solvents, and often lose activity during immobilization. In this relation, there is a considerable interest in ADHs from extremophilic microorganisms; among them, Archaea are of great interest. The representatives of all groups of NAD(P)-dependent ADHs have been detected in genomes of Archaea (11, 12); however, only a few enzymes have been characterized, and the great majority of them belong to medium-chain (3, 4, 14, 16, 19) or long-chain iron-activated ADHs (1, 8, 9). Up to now, a single short-chain archaeal ADH from Pyrococcus furiosus (10, 18) and only one archaeal aldo-keto reductase also from P. furiosus (11) have been characterized.Thermococcus sibiricus is a hyperthermophilic anaerobic archaeon isolated from a high-temperature oil reservoir capable of growth on complex organic substrates (15). The complete genome sequence of T. sibiricus has been recently determined and annotated (13). Several ADHs are encoded by the T. sibiricus genome, including three short-chain ADHs (Tsib_0319, Tsib_0703, and Tsib_1998) (13). In this report, we describe the cloning and expression of the Tsib_0319 gene from T. sibiricus and the purification and the biochemical characterization of its product, the thermostable short-chain ADH (TsAdh319).The Tsib_0319 gene encodes a protein with a size of 234 amino acids and the calculated molecular mass of 26.2 kDa. TsAdh319 has an 85% degree of sequence identity with short-chain ADH from P. furiosus (AdhA; PF_0074) (18). Besides AdhA, close homologs of TsAdh319 were found among different bacterial ADHs, but not archaeal ADHs. The gene flanked by the XhoI and BamHI sites was PCR amplified using two primers (sense primer, 5′-GTTCTCGAGATGAAGGTTGCTGTGATAACAGGG-3′, and antisense primer, 5′-GCTGGATCCTCAGTATTCTGGTCTCTGGTAGACGG-3′) and cloned into the pET-15b vector. TsAdh319 was overexpressed, with an N-terminal His6 tag in Escherichia coli Rosetta-gami (DE3) and purified to homogeneity by metallochelating chromatography (Hi-Trap chelating HP column; GE Healthcare) followed by gel filtration on Superdex 200 10/300 GL column (GE Healthcare) equilibrated in 50 mM Tris-HCl (pH 7.5) with 200 mM NaCl. The homogeneity and the correspondence to the calculated molecular mass of 28.7 kDa were verified by SDS-PAGE (7). The molecular mass of native TsAdh319 was 56 to 60 kDa, which confirmed the dimeric structure in solution.The standard ADH activity measurement was made spectrophotometrically at the optimal pH by following either the reduction of NADP (in 50 mM Gly-NaOH buffer; pH 10.5) or the oxidation of NADPH (in 0.1 M sodium phosphate buffer; pH 7.5) at 340 nm at 60°C. The enzyme exhibited a strong preference for NADP(H) and broad substrate specificity (Table (Table1).1). The highest oxidation rates were found with pentoses d-arabinose (2.0 U mg−1) and d-xylose (2.46 U mg−1), and the highest reduction rates were found with dimethylglyoxal (5.9 U mg−1) and pyruvaldehyde (2.2 U mg−1). The enzyme did not reduce sugars which were good substrates for the oxidation reaction. The kinetic parameters of TsAdh319 determined for the preferred substrates are shown in Table Table2.2. The enantioselectivity of the enzyme was estimated by measuring the conversion rates of 2-butanol enantiomers. TsAdh319 showed an evident preference, >2-fold, for (S)-2-butanol over (RS)-2-butanol. The enzyme stereoselectivity is confirmed by the preferred oxidation of d-arabinose over l-arabinose (Table (Table1).1). The fact that TsAdh319 is metal independent was supported by the absence of a significant effect of TsAdh319 preincubation with 10 mM Me2+ for 30 min before measuring the activity in the presence of 1 mM Me2+ or EDTA (Table (Table3).3). TsAdh319 also exhibited a halophilic property, so the enzyme activity increased in the presence of NaCl and KCl and the activation was maintained even at concentration of 4 M and 3 M, respectively (Table (Table33).
Open in a separate windowaSubstrates were present in 250 mM or 50 mM (*) concentrations.bRelative rates, measured under standard conditions, were calculated by defining the activity for 2-propanol as 100%, which corresponds to 1.0 U mg−1. Data are averages from triplicate experiments.cRelative rates, measured under standard conditions, were calculated by defining the activity for pyruvaldehyde as 100%, which corresponds to 2.2 U mg−1. Data are averages from triplicate experiments.
Open in a separate windowaActivity was measured under standard conditions with 2-propanol. Data are averages from triplicate experiments.bActivity was measured under standard conditions with pyruvaldehyde. Data are averages from triplicate experiments.
Open in a separate windowaThe activity was measured under standard conditions with 2-propanol; relative rates were calculated by defining the activity without salts as 100%, which corresponds to 0.9 U mg−1. Data are averages from duplicate experiments.The most essential distinctions of TsAdh319 are the thermophilicity and high thermostability of the enzyme. The optimum temperature for the 2-propanol oxidation catalyzed by TsAdh319 was not achieved. The initial reaction rate of oxidation increased up to 100°C (Fig. (Fig.1).1). The Arrhenius plot is a straight line, typical of a single rate-limited thermally activated process, but there is no obvious transition point due to the temperature-dependent conformational changes of the protein molecule. The activation energy for the oxidation of 2-propanol was estimated at 84.0 ± 5.8 kJ·mol−1. The thermostability of TsAdh319 was calculated from residual TsAdh319 activity after preincubation of 0.4 mg/ml enzyme solution in 50 mM Tris-HCl buffer (pH 7.5) containing 200 mM NaCl at 70, 80, 90, or 100°C. The preincubation at 70°C or 80°C for 1.5 h did not cause a decrease in the TsAdh319 activity, but provoked slight activation. The residual TsAdh319 activities began to decrease after 2 h of preincubation at 70°C or 80°C and were 10% and 15% down from the control, respectively. The determined half-life values of TsAdh319 were 2 h at 90°C and 1 h at 100°C.Open in a separate windowFIG. 1.Temperature dependence of the initial rate of the 2-propanol reduction by TsAdh319. The reaction was initiated by enzyme addition to a prewarmed 2-propanol-NADP mixture. The inset shows the Arrhenius plot of the same data.Protein thermostability often correlates with such important biotechnological properties as increased solvent tolerance (2). We tested the influence of organic solvents at a high concentration (50% [vol/vol]) on TsAdh319 by using either preincubation of the enzyme at a concentration of 0.2 mg/ml with solvents for 4 h at 55°C or solvent addition into the reaction mixture to distinguish the effect of solvent on the protein stability and on the enzyme activity. TsAdh319 showed significant solvent tolerance in both cases (Table (Table4),4), and the effects of solvents could be modulated by salts, acting apparently as molecular lyoprotectants (17). Furthermore, TsAdh319 maintained 57% of its activity in 25% (vol/vol) 2-propanol, which could be used as the cosubstrate in cofactor regeneration (6).
Open in a separate windowaThe activity measured at the standard condition with 2-propanol as a substrate. Data are averages from triplicate experiments.bPreincubation for 4 h at 55°C in the presence of 50% (vol/vol) of solvent prior the activity assay.cWithout preincubation, solvent addition to the reaction mixture up to 50% (vol/vol) or using the buffer saturated by a solvent (*).dDMSO, dimethyl sulfoxide.eDMFA, dimethylformamide.From all the aforesaid we may suppose TsAdh319 or its improved variant to be interesting both for the investigation of structural features of protein tolerance and for biotechnological applications. 相似文献
TABLE 1.
Substrate specificity of TsAdh319Substratea | Relative activity (%) |
---|---|
Oxidation reactionb | |
Methanol | 0 |
2-Methoxyethanol | 0 |
Ethanol | 36 |
1-Butanol | 80 |
2-Propanol | 100 |
(RS)-(±)-2-Butanol | 86 |
(S)-(+)-2-Butanol | 196 |
2-Pentanol | 67 |
1-Phenylmethanol | 180 |
1.3-Butanediol | 91 |
Ethyleneglycol | 0 |
Glycerol | 16 |
d-Arabinose* | 200 |
l-Arabinose* | 17 |
d-Xylose* | 246 |
d-Ribose* | 35 |
d-Glucose* | 146 |
d-Mannose* | 48 |
d-Galactose* | 0 |
Cellobiose* | 71 |
Reduction reactionc | |
Pyruvaldehyde | 100 |
Dimethylglyoxal | 270 |
Glyoxylic acid | 36 |
Acetone | 0 |
Cyclopentanone | 0 |
Cyclohexanone | 4 |
3-Methyl-2-pentanone* | 13 |
d-Arabinose* | 0 |
d-Xylose* | 0 |
d-Glucose* | 0 |
Cellobiose* | 0 |
TABLE 2.
Apparent Km and Vmax values for TsAdh319Coenzyme or substrate | Apparent Km (mM) | Vmax (U mg−1) | kcat (s−1) |
---|---|---|---|
NADPa | 0.022 ± 0.002 | 0.94 ± 0.02 | 0.45 ± 0.01 |
NADPHb | 0.020 ± 0.003 | 3.16 ± 0.11 | 1.51 ± 0.05 |
2-Propanol | 168 ± 29 | 1.10 ± 0.09 | 0.53 ± 0.04 |
d-Xylose | 54.4 ± 7.4 | 1.47 ± 0.09 | 0.70 ± 0.04 |
Pyruvaldehyde | 17.75 ± 3.38 | 4.26 ± 0.40 | 2.04 ± 0.19 |
TABLE 3.
Effect of various ions and EDTA on TsAdh319aCompound | Concn (mM) | Relative activity (%) |
---|---|---|
None | 0 | 100 |
NaCl | 400 | 206 |
600 | 227 | |
4,000 | 230 | |
KCl | 600 | 147 |
2,000 | 200 | |
3,000 | 194 | |
MgCl2 | 10 | 78 |
CoCl2 | 10 | 105 |
NiSO4 | 10 | 100 |
ZnSO4 | 10 | 79 |
FeSO4 | 10 | 74 |
EDTA | 1 | 100 |
5 | 80 |
TABLE 4.
Influence of various solvents on TsAdh319 activityaSolvent | Relative activity (%)b | Relative activity (%)c | |
---|---|---|---|
Buffer without NaCl | Buffer with 600 mM NaCl | ||
None | 100 | 100 | 100 |
DMSOd | 98 | 0 | 40 |
DMFAe | 101 | 13 | 41 |
Methanol | 98 | 25 | 9 |
Acetonitrile | 95 | 0 | 0 |
Ethyl acetate | 47 | 0* | 33* |
Chloroform | 105 | 79* | 81* |
n-Hexane | 105 | 60* | 118* |
n-Decane | 36 | 91* | 107* |
5.
Anaerobic Biodegradation of 2,4,5-Trichlorophenoxyacetic Acid in Samples from a Methanogenic Aquifer: Stimulation by Short-Chain Organic Acids and Alcohols 总被引:13,自引:11,他引:2 下载免费PDF全文
The herbicide 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) was dehalogenated in samples from a methanogenic aquifer to form 2,4- and 2,5-dichlorophenoxyacetic acids as the first detected intermediates. Further incubation of the aquifer slurries resulted in the formation of several intermediates including monochlorophenoxyacetic acids, di- and monochlorophenols, as well as phenol. No transformation of the parent substrate or production of intermediates was detected in autoclaved controls. The pattern of intermediate formation suggested that the anaerobic degradation of 2,4,5-T proceeded by a series of sequential dehalogenation steps with side-chain cleavage reactions occurring at some point before ring cleavage. The addition of short-chain organic acids or alcohols stimulated the onset and rate of 2,4,5-T dehalogenation and decreased the amount of parent substrate still detectable as halogenated intermediates at the end of the experiment. Sulfate addition had the opposite effect on dehalogenation regardless of whether supplemental carbon was added to the aquifer slurries. The inhibitory effect of sulfate on dehalogenation could sometimes be relieved with molybdate, although this effect seemed to be related to the supplemental carbon compound that was used. 相似文献
6.
Kinji Uchida 《Bioscience, biotechnology, and biochemistry》2013,77(7):1515-1516
Silver-coated cloth (SCC) effectively controlled root rot that was caused by Pythium aphanidermatum in hydroponically grown cucumber plants. The presence of SCC in the hydroponic solution reduced the root rot from 100% to 10% 20 days after inoculation with zoospores of P. aphanidermatum. It was suggested that the inhibition of SCC was caused not only by the silver ion dissolved from SCC, but also by the metallic silver and silver compounds formed on the surface of the root. 相似文献
7.
Leonov O. N. Shcherbakov V. M. Devichensky V. M. Kryukova L. Yu. Vorontsov E. A. Kuznetsov S. L. Kryukov L. N. 《Russian Journal of Bioorganic Chemistry》2001,27(3):191-194
A series of 1-(2-hydroxyethyl)- and 1-(3-hydroxyethyl)-3-substituted ureas and thioureas were synthesized. 1-(3-Hydroxyethyl)-3-acylthioureas were shown to be specific substrates for alcohol dehydrogenase in vitro. 相似文献
8.
Schuster J Schäfer F Hübler N Brandt A Rosell M Härtig C Harms H Müller RH Rohwerder T 《Journal of bacteriology》2012,194(5):972-981
Tertiary alcohols, such as tert-butyl alcohol (TBA) and tert-amyl alcohol (TAA) and higher homologues, are only slowly degraded microbially. The conversion of TBA seems to proceed via hydroxylation to 2-methylpropan-1,2-diol, which is further oxidized to 2-hydroxyisobutyric acid. By analogy, a branched pathway is expected for the degradation of TAA, as this molecule possesses several potential hydroxylation sites. In Aquincola tertiaricarbonis L108 and Methylibium petroleiphilum PM1, a likely candidate catalyst for hydroxylations is the putative tertiary alcohol monooxygenase MdpJ. However, by comparing metabolite accumulations in wild-type strains of L108 and PM1 and in two mdpJ knockout mutants of strain L108, we could clearly show that MdpJ is not hydroxylating TAA to diols but functions as a desaturase, resulting in the formation of the hemiterpene 2-methyl-3-buten-2-ol. The latter is further processed via the hemiterpenes prenol, prenal, and 3-methylcrotonic acid. Likewise, 3-methyl-3-pentanol is degraded via 3-methyl-1-penten-3-ol. Wild-type strain L108 and mdpJ knockout mutants formed isoamylene and isoprene from TAA and 2-methyl-3-buten-2-ol, respectively. It is likely that this dehydratase activity is catalyzed by a not-yet-characterized enzyme postulated for the isomerization of 2-methyl-3-buten-2-ol and prenol. The vitamin requirements of strain L108 growing on TAA and the occurrence of 3-methylcrotonic acid as a metabolite indicate that TAA and hemiterpene degradation are linked with the catabolic route of the amino acid leucine, including an involvement of the biotin-dependent 3-methylcrotonyl coenzyme A (3-methylcrotonyl-CoA) carboxylase LiuBD. Evolutionary aspects of favored desaturase versus hydroxylation pathways for TAA conversion and the possible role of MdpJ in the degradation of higher tertiary alcohols are discussed. 相似文献
9.
Toshinobu Ishihara Takeshi Kitahara Masanao Matsui 《Bioscience, biotechnology, and biochemistry》2013,77(2):439-442
A new synthetic procedure for dienone derivatives, i.e., ionone and irone, is described. The key step is the pyrolytic rearrangement of allyl alcohols and 2,2-dimethoxypropane in the presence of an acid anhydride and phosphoric acid. 相似文献
10.
Metabolism of Unsaturated Monogalactosyldiacylglycerol Molecular Species in Arabidopsis thaliana Reveals Different Sites and Substrates for Linolenic Acid Synthesis 总被引:1,自引:5,他引:1 下载免费PDF全文
Synthesis of unsaturated monogalactosyldiacylglycerol (MGDG) was examined in a mutant of Arabidopsis thaliana (L.) Heynh. containing reduced levels of hexadecatrienoic (16:3) and linolenic (18:3) acids in leaf lipids. Molecular species composition and labeling kinetics following the incorporation of exogenous [14C]fatty acids suggest that at least two pathways and multiple substrates are involved in desaturation of linoleic acid (18:2) to 18:3 for production of unsaturated galactolipids. A reduction in 18:3/16:3 MGDG and an increase in 18:2/16:2 MGDG, together with labeling kinetics of these molecular species following the incorporation of exogenous [14C]12:0 fatty acids, suggests that a chloroplastic pathway for production of 18:3 at the sn-1 position of MGDG utilizes 18:2/16:2 MGDG as a substrate. This chloroplastic (prokaryotic) pathway is deficient in the mutant. When exogenous [14C]18:1 was supplied, a eukaryotic (cytoplasmic) pathway involving the desaturation of 18:2 to 18:3 on phosphatidylcholine serves as the source of 18:3 for the sn-2 position of MGDG. This eucaryotic pathway predominates in the mutant. 相似文献
11.
Microbial Oxidation of Gaseous Hydrocarbons: Production of Secondary Alcohols from Corresponding n-Alkanes by Methane-Utilizing Bacteria 总被引:2,自引:3,他引:2 下载免费PDF全文
Ramesh N. Patel C. T. Hou A. I. Laskin A. Felix P. Derelanko 《Applied microbiology》1980,39(4):720-726
Over 20 new strains of methane-utilizing bacteria were isolated from lake water and soil samples. Cell suspensions of these and of other known strains of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol). The product secondary alcohols accumulated extracellularly. The rate of production of secondary alcohols varied with the organism used for oxidation. The average rate of 2-propanol, 2-butanol, 2-pentanol, and 2-hexanol production was 1.5, 1.0, 0.15, and 0.08 μmol/h per 5.0 mg of protein in cell suspensions, respectively. Secondary alcohols were slowly oxidized further to the corresponding methylketones. Primary alcohols and aldehydes were also detected in low amounts (rate of production were 0.05 to 0.08 μmol/h per 5.0 mg of protein in cell suspensions) as products of n-alkane (propane and butane) oxidation. However, primary alcohols and aldehydes were rapidly metabolized further by cell suspensions. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes to their corresponding secondary alcohols, indicating that the enzymatic system required for oxidation of n-alkanes was induced only during growth on methane. The optimal conditions for in vivo secondary alcohol formation from n-alkanes were investigated in Methylosinus sp. (CRL-15). The rate of 2-propanol and 2-butanol production was linear for the 40-min incubation period and increased directly with cell protein concentration up to 12 mg/ml. The optimal temperature and pH for the production of 2-propanol and 2-butanol were 40°C and pH 7.0. Metalchelating agents inhibited the production of secondary alcohols. The activities for the hydroxylation of n-alkanes in various methylotrophic bacteria were localized in the cell-free particulate fractions precipitated by centrifugation between 10,000 and 40,000 × g. Both oxygen and reduced nicotinamide adenine dinucleotide were required for hydroxylation activity. The metal-chelating agents inhibited hydroxylation of n-alkanes by the particulate fraction, indicating the involvement of a metal-containing enzyme system in the oxidation of n-alkanes. The production of 2-propanol from the corresponding n-alkane by the particulate fraction was inhibited in the presence of methane, suggesting that the subterminal hydroxylation of n-alkanes may be catalyzed by methane monooxygenase. 相似文献
12.
Purification and Properties of Primary and Secondary Alcohol Dehydrogenases from Thermoanaerobacter ethanolicus 总被引:5,自引:1,他引:5 下载免费PDF全文
Thermoanaerobacter ethanolicus (ATCC 31550) has primary and secondary alcohol dehydrogenases. The two enzymes were purified to homogeneity as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. The apparent Mrs of the primary and secondary alcohol dehydrogenases are 184,000 and 172,000, respectively. Both enzymes have high thermostability. They are tetrameric with apparently identical subunits and contain from 3.2 to 5.5 atoms of Zn per subunit. The two dehydrogenases are NADP dependent and reversibly convert ethanol and 1-propanol to the respective aldehydes. The Vm values with ethanol as a substrate are 45.6 μmol/min per mg for the primary alcohol dehydrogenase and 13 μmol/min per mg for the secondary alcohol dehydrogenase at pH 8.9 and 60°C. The primary enzyme oxidizes primary alcohols, including up to heptanol, at rates similar to that of ethanol. It is inactive with secondary alcohols. The secondary enzyme is inactive with 1-pentanol or longer chain alcohols. Its best substrate is 2-propanol, which is oxidized 15 times faster than ethanol. The secondary alcohol dehydrogenase is formed early during the growth cycle. It is stimulated by pyruvate and has a low Km for acetaldehyde (44.8 mM) in comparison to that of the primary alcohol dehydrogenase (210 mM). The latter enzyme is formed late in the growth cycle. It is postulated that the secondary alcohol dehydrogenase is largely responsible for the formation of ethanol in fermentations of carbohydrates by T. ethanolicus. 相似文献
13.
A cluster exposed: structure of the Rieske ferredoxin from biphenyl dioxygenase and the redox properties of Rieske Fe-S proteins 总被引:4,自引:0,他引:4
BACKGROUND: Ring-hydroxylating dioxygenases are multicomponent systems that initiate biodegradation of aromatic compounds. Many dioxygenase systems include Rieske-type ferredoxins with amino acid sequences and redox properties remarkably different from the Rieske proteins of proton-translocating respiratory and photosynthetic complexes. In the latter, the [Fe2S2] clusters lie near the protein surface, operate at potentials above +300 mV at pH 7, and express pH- and ionic strength-dependent redox behavior. The reduction potentials of the dioxygenase ferredoxins are approximately 150 mV and are pH-independent. These distinctions were predicted to arise from differences in the exposure of the cluster and/or interactions of the histidine ligands. RESULTS: The crystal structure of BphF, the Rieske-type ferredoxin associated with biphenyl dioxygenase, was determined by multiwavelength anomalous diffraction and refined at 1.6 A resolution. The structure of BphF was compared with other Rieske proteins at several levels. BphF has the same two-domain fold as other Rieske proteins, but it lacks all insertions that give the others unique structural features. The BphF Fe-S cluster and its histidine ligands are exposed. However, the cluster has a significantly different environment in that five fewer polar groups interact strongly with the cluster sulfide or the cysteinyl ligands. CONCLUSIONS: BphF has structural features consistent with a minimal and perhaps archetypical Rieske protein. Variations in redox potentials among Rieske clusters appear to be largely the result of local electrostatic interactions with protein partial charges. Moreover, it appears that the redox-linked ionizations of the Rieske proteins from proton-translocating complexes are also promoted by these electrostatic interactions. 相似文献
14.
Kirkland, Jerry J. (Oklahoma State University, Stillwater), and Norman N. Durham. Synthesis of protocatechuate oxygenase by Pseudomonas fluorescens in the presence of exogenous carbon sources. J. Bacteriol. 90:15-22. 1965.-The addition of glucose, ribose, or fructose (0.45 or 45.0 mumoles/ml) simultaneously with protocatechuic acid shortens the lag period required for synthesis of protocatechuate oxygenase by a washed-cell suspension of Pseudomonas fluorescens. Glucose is readily oxidized and supports growth of P. fluorescens, whereas neither ribose nor fructose readily supports growth. High glucose concentrations (45.0 mumoles/ml) shorten the lag period but lower the total enzyme synthesis. The pH drops during glucose oxidation, and this is accompanied by a decrease in the rate of enzyme synthesis. High glucose concentrations, with adequate buffering, permitted "normal" enzyme synthesis. A decrease in the total enzyme synthesis was not observed in the presence of high concentrations of ribose or fructose. Succinate, pyruvate, acetate, or formate (0.45 mumole/ml) were readily oxidized, but did not shorten the lag period required for synthesis of the enzyme. The data suggest that glucose, ribose, or fructose may serve as a "specific" carbon source (such as ribose-5-phosphate or a similar precursor important in ribonucleic acid synthesis) functional in the synthesis of protocatechuate oxygenase. 相似文献
15.
Production of Methyl Ketones from Secondary Alcohols by Cell Suspensions of C2 to C4n-Alkane-Grown Bacteria 下载免费PDF全文
Ching T. Hou Ramesh Patel Allen I. Laskin Nancy Barnabe Irene Barist 《Applied microbiology》1983,46(1):178-184
Nineteen new C2 to C4n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C2 to C4n-alkanes. Cell suspensions of these C2 to C4n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60°C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes. 相似文献
16.
Carlos Navarro-Retamal Carlos Gaete-Eastman Raúl Herrera Julio Caballero Jans H. Alzate-Morales 《PloS one》2016,11(4)
Aroma and flavor are important factors of fruit quality and consumer preference. The specific pattern of aroma is generated during ripening by the accumulation of volatiles compounds, which are mainly esters. Alcohol acyltransferase (AAT) (EC 2.3.1.84) catalyzes the esterification reaction of aliphatic and aromatic alcohols and acyl-CoA into esters in fruits and flowers. In Fragaria x ananassa, there are different volatiles compounds that are obtained from different alcohol precursors, where octanol and hexanol are the most abundant during fruit ripening. At present, there is not structural evidence about the mechanism used by the AAT to synthesize esters. Experimental data attribute the kinetic role of this enzyme to 2 amino acidic residues in a highly conserved motif (HXXXD) that is located in the middle of the protein. With the aim to understand the molecular and energetic aspects of volatiles compound production from F. x ananassa, we first studied the binding modes of a series of alcohols, and also different acyl-CoA substrates, in a molecular model of alcohol acyltransferase from Fragaria x ananassa (SAAT) using molecular docking. Afterwards, the dynamical behavior of both substrates, docked within the SAAT binding site, was studied using routine molecular dynamics (MD) simulations. In addition, in order to correlate the experimental and theoretical data obtained in our laboratories, binding free energy calculations were performed; which previous results suggested that octanol, followed by hexanol, presented the best affinity for SAAT. Finally, and concerning the SAAT molecular reaction mechanism, it is suggested from molecular dynamics simulations that the reaction mechanism may proceed through the formation of a ternary complex, in where the Histidine residue at the HXXXD motif deprotonates the alcohol substrates. Then, a nucleophilic attack occurs from alcohol charged oxygen atom to the carbon atom at carbonyl group of the acyl CoA. This mechanism is in agreement with previous results, obtained in our group, in alcohol acyltransferase from Vasconcellea pubescens (VpAAT1). 相似文献
17.
Microbial Oxidation of Gaseous Hydrocarbons: Production of Methyl Ketones from Their Corresponding Secondary Alcohols by Methane- and Methanol-Grown Microbes 总被引:1,自引:9,他引:1 下载免费PDF全文
Ching T. Hou Ramesh Patel Allen I. Laskin Nancy Barnabe Irene Marczak 《Applied microbiology》1979,38(1):135-142
Cultures of methane- or methanol-utilizing microbes, including obligate (both types I and II) and facultative methylotrophic bacteria, obligate methanol utilizers, and methanol-grown yeasts were isolated from lake water of Warinanco Park, Linden, N.J., and lake and soil samples of Bayway Refinery, Linden, N.J. Resting-cell suspensions of these, and of other known C1-utilizing microbes, oxidized secondary alcohols to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Succinate-grown cells of facultative methylotrophs did not oxidize secondary alcohols. Among the secondary alcohols, 2-butanol was oxidized at the highest rate. The optimal conditions for in vivo methyl ketone formation were compared among five different types of C1-utilizing microbes. Some enzymatic degradation of 2-butanone was observed. The product, 2-butanone, did not inhibit the oxidation of 2-butanol. The rate of the 2-butanone production was linear for the first 4 h of incubation for all five cultures tested. A yeast culture had the highest production rate. The optimum temperature for the production of 2-butanone was 35°C for all the bacteria tested. The yeast culture had a higher temperature optimum (40°C), and there was a reasonably high 2-butanone production rate even at 45°C. Metal-chelating agents inhibit the production of 2-butanone, suggesting the involvement of metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble extract of sonically disrupted cells. The cell-free system requires a cofactor, specifically nicotinamide adenine dinucleotide, for its activity. This is the first report of a nicotinamide adenine dinucleotide-dependent, secondary alcohol-specific enzyme. 相似文献
18.
Tadao Kondo Hisao Nakai Toshio Goto 《Bioscience, biotechnology, and biochemistry》2013,77(12):1990-1991
A kinetic analysis of splitting oligomeric substrates by poly(β-D-mannuronate)lyases (alginate lyases I, SP1 and SP2) from a marine mollusk was done. Monomer and oligomers of mannuronate and guluronate were prepared by hydrolyzing poly β-1,4-D-mannuronate and poly α-1,4-L-guluronate from alginate with H2SO4, respectively, and thereafter by gel filtration on a Bio-Gel P-2 column. Alginate lyases I apparently did not act on the trimer of mannuronate but did on the tetramer or those longer than that, indicating the increased kcad/Km with increasing polymerization degree. The kinetic analyses suggest that the size of the subsite structure of the enzymes is most likely to be able to bind the linear pentamer of mannuronate units. 相似文献
19.
A. LESLEY JONES NANCY L. PRUITT DAVID LLOYD JOHN L. HARWOOD 《The Journal of eukaryotic microbiology》1991,38(6):532-536
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14 C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14 C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14 C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii . 相似文献
20.
Erland Holmberg Erik Dahlen Torbj
Rn Norin Karl Hult 《Biocatalysis and Biotransformation》1991,4(4):305-312
The effect of a chiral centre in the acyl group on the resolution of esters prepared from a racemic alcohol was investigated. R-2-chloropropionic acid afforded a higher enantiomeric ratio than S-2-chioropropionic acid in the hydrolysis of the corresponding esters of racemic 1-phenylethanol catalyzed by Candida cylindracea lipase. Even when a mixture of esters prepared from racemic acid and racemic alcohol was used for resolution of the alcohol, a noteworthy high enantioselectivity was observed. The hydrolysis of a bichiral ester offers an amplification in the resolution of enantiomers of alcohols by the combination of a chemical diastereoselectivity and an enzymatic enantio- and diastereoselectivity. 相似文献