首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 777 毫秒
1.
2.
We investigated the effect of culture temperature on the maximum specific growth rate and the cellular sugar accumulation, and the effect of a temperature shift on the sugar accumulation of Chlorella pyrenoidosa cells in a batch culture system. Increase in temperature below 30?°C appeared to correlate with increase in the maximum specific growth rate, on the contrary the cellular sugar content showed a reverse tendency against temperature. We attempted to utilize this tendency for improving sugar productivity in Chlorella. First, we cultured Chlorella at 28?°C during the logarithmic growth phase to obtain a high specific growth rate. The culture temperature was then shifted from 28?°C to 22?°C at the late logarithmic growth phase in order to reduce the specific growth rate and enhance the cellular sugar accumulation. As a result, we obtained a 15% increase in sugar production over that obtained by cultivation at 28?°C throughout the culture. We also investigated the effect of light-dark time cycle on the sugar productivity and found that this operating variable did not affect the cellular sugar content but influenced the final cell concentration. Among the examined light-dark time cycles, maximum sugar productivity was obtained in the case of 12?h light and 12?h dark period.  相似文献   

3.
Many studies have examined the effects of thiol compounds upon cells in culture (e.g., upon signal transduction and regulation of gene expression), but few have considered how thiols can interact with cell culture media. A wide range of thiols (cysteine, GSH, N-acetylcysteine, gamma-glutamylcysteine, cysteinylglycine, cysteamine, homocysteine) were found to interact with three commonly used cell culture media (RPMI, MEM, DMEM) to generate hydrogen peroxide with complex concentration-dependencies. Thiols added to these media rapidly disappeared, although less H(2)O(2) was generated on a molar basis than the amount of thiol lost. Studies on cellular effects of thiols, especially those on redox regulation of gene expression or protein function, need to take into account that thiols are rapidly lost, and that their oxidation generates H(2)O(2), which can have multiple concentration-dependent effects on cell metabolism.  相似文献   

4.
ATP loss is a prominent feature of cellular injury induced by oxidants or ischemia. How reduction of cellular ATP levels contributes to lethal injury is still poorly understood. In this study we examined the ability of H2O2 to inhibit in a dose-dependent manner the extrusion of fluorescent organic anions from bovine pulmonary artery endothelial cells. Extrusion of fluorescent organic anions was inhibited by probenecid, suggesting an organic anion transporter was involved. In experiments in which ATP levels in endothelial cells were varied by treatment with different degrees of metabolic inhibition, it was determined that organic anion transport was ATP-dependent. H2O2-induced inhibition of organic anion transport correlated well with the oxidant's effect on cellular ATP levels. Thus H2O2-mediated inhibition of organic anion transport appears to be via depletion of ATP, a required substrate for the transport reaction. Inhibition of organic anion transport directly by probenecid or indirectly by metabolic inhibition with reduction of cellular ATP levels was correlated with similar reductions of short term viability. This supports the hypothesis that inhibition of organic anion transport after oxidant exposure or during ischemia results from depletion of ATP and may significantly contribute to cytotoxicity.  相似文献   

5.
Summary The study investigates the influence of different culture conditions on attachment, viability and functional status of rainbow trout (Oncorhynchus mykiss) liver cells in primary culture. Cells were isolated by a two-step collagenase perfusion and incubated in serum-free, chemically defined minimal essential medium (MEM), (a) as a monolayer on uncoated PRI-MARIA? dishes, (b) as a monolayer on culture dishes coated with calf collagen type 1, and (c) in coculture with the established fish cell lines RTH-149 or RTG-2. Cell attachment was assessed from DNA and protein concentrations per dish, viability was estimated from cellular lactate dehydrogenase release, and the metabolic status was investigated by measuring activities of the phosphoenolpyruvate carboxykinase and biotransformation enzymes as well as the total cytochrome P450 contents. Seeding of hepatocytes on collagen-coated dishes did not alter cell attachment or detachment from the culture substrate, but had a small, but not significant effect on cell viability and metabolic parameters. Coculture of liver cells and RTG-2 cells reduced hepatocyte detachment from the culture substrate, and it was associated with a significant elevation of 7-ethoxyresorufin-O-deethylase activities in the hepatic cells. Cytochrome P450 contents, however, were not altered. The coculture effect on liver cell physiology clearly depended on the type of cell line, because coculture with RTH-149 cells led to similar, but much weaker effects than obtained in cocultures with RTG-2 cells. Electron microscopical observations revealed the existence of gap junctions and possible exocytosis-like transport between cell lines and hepatocytes. The results point to the potential of coculture systems to improve physiological parameters of trout liver cells in primary culture.  相似文献   

6.
To support and enhance thein vitro growth and activity of mesenchymal stem cells (MSCs), the cell culture medium may be supplemented with various proteins and factors to mimic the physiological environment in which the cells optimally proliferate and differentiate. In this study, the effects of mechanical factors on cellular metabolic responses were investigated experimentally using a bioreactor. The effects of various chemical factors, such as growth factors, cytokines, and hormones, were also investigated. Based on previous reports demonstrating the important roles of mechanical factors in the growth and activity of MSCs, we sought to evaluate the effects of mechanical stimuli on the proliferation of bone marrow-derived MSCs using a cell training bioreactor that imposed cyclic mechanical stretch, with parameters of 240 min/day, 0.03 Hz, and 5–15% strain. The application of cyclic stretch (5–15% strain) to the MSCs enhanced their proliferation during the early stage (3 days), but not the late stage (14 days), of batch culture. Mechanical stretch did not increase the release of lactate dehydrogenase (LDH) from the MSCs during culture. Appropriate levels of mechanical stretch (5–10% strain) increased collagen synthesis, but did not alter MSC surface antigen expression. It is thought that the appropriate level of mechanical stretch was able to serve as a potent positive modulator of MSC proliferation during the initial stages of culture.  相似文献   

7.
Profound alterations in myocellular creatine and phosphocreatine levels are observed during human heart failure. To maintain its intracellular creatine stores, cardiomyocytes depend upon a cell membrane creatine transporter whose regulation is not clearly understood. Creatine transport capacity in the intact heart is modulated by substrate availability, and it is reduced in the failing myocardium, likely adding to the energy imbalance that characterizes heart failure. AMPK, a key regulator of cellular energy homeostasis, acts by switching off energy-consuming pathways in favor of processes that generate energy. Our objective was to determine the effects of substrate availability and AMPK activation on creatine transport in cardiomyocytes. We studied creatine transport in rat neonatal cardiomyocytes and HL-1 cardiac cells expressing the human creatine transporter cultured in the presence of varying creatine concentrations and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Transport was enhanced in cardiomyocytes following incubation in creatine-depleted medium or AICAR. The changes in transport were due to alterations in V(max) that correlated with changes in total and cell surface creatine transporter protein content. Our results suggest a positive role for AMPK in creatine transport modulation for cardiomyocytes in culture.  相似文献   

8.
9.
Cytoglobin is a recently identified vertebrate globin whose functions include scavenging reactive oxygen and nitrosative species. In tumor cells, CYGB may function as a tumor suppressor gene. Here we show that knockdown of cytoglobin expression can sensitize human glioma cells to oxidative stress induced by chemical inhibitors of the electron transport chain and as well can increase cellular radiosensitivity. When treated with antimycin A, an inhibitor of the mitochondrial electron transport chain, cytoglobin-deficient cells showed significantly higher H?O? levels, whereas H?O? levels were significantly reduced in cytoglobin-overexpressing cells. In addition, cytoglobin knockdown significantly decreased the doubling time of glioma cell lines, consistent with a putative tumor suppressor function. These finding suggest that modulating cytoglobin levels may be a promising treatment strategy for sensitizing human glioma cells to oxidative stress that is induced by ionizing radiation, certain chemotherapies and ischemia-reperfusion.  相似文献   

10.
Hodge G  Hodge S  Han P 《Cytokine》2000,12(12):1763-1768
Most of the investigatory studies of cytokine production by cells have been performed on purified cells or cell lines by measuring the secreted cytokine levels in the bulk culture supernatant. However, results of cytokine production from isolated peripheral blood mononuclear cells (PBMCs) cultivated in synthetic media, have been reported to be inaccurate and of low reproducibility. Isolation procedures have been shown to be toxic to certain cells. We hypothesised that purified cell culture techniques may result in increased levels of apoptosis of cells compared with whole blood culture techniques. To compare the effects on cell viability between PBMCs and whole blood techniques, an Annexin V binding assay was utilised. The effect of different cell concentration and serum/plasma concentrations on apoptosis levels in the various leukocyte subsets in PBMC and whole blood cultures following stimulation was investigated. There were significantly increased levels of apoptosis of cells in PBMC compared to whole culture at similar plasma concentrations, suggesting that cell viability was plasma concentration-dependent. There were significantly increased levels of apoptosis in PBMC cultures at the same cell concentration to whole blood techniques, suggesting that interaction between all cellular elements (as in whole blood techniques) is important in maintaining cell viability. These results suggest that whole blood culture techniques provide the best conditions for study of leukocyte cytokine production. If PBMC culture is performed, similar plasma and cell concentration to whole blood will best preserve cell viability.  相似文献   

11.
Cells have the ability to actively sense their mechanical environment and respond to both substrate stiffness and stretch by altering their adhesion, proliferation, locomotion, morphology, and synthetic profile. In order to elucidate the interrelated effects of different mechanical stimuli on cell phenotype in vitro, we have developed a method for culturing mammalian cells in a two-dimensional environment at a wide range of combined levels of substrate stiffness and dynamic stretch. Polyacrylamide gels were covalently bonded to flexible silicone culture plates and coated with monomeric collagen for cell adhesion. Substrate stiffness was adjusted from relatively soft (G′ = 0.3 kPa) to stiff (G′ = 50 kPa) by altering the ratio of acrylamide to bis-acrylamide, and the silicone membranes were stretched over circular loading posts by applying vacuum pressure to impart near-uniform stretch, as confirmed by strain field analysis. As a demonstration of the system, porcine aortic valve interstitial cells (VIC) and human mesenchymal stem cells (hMSC) were plated on soft and stiff substrates either statically cultured or exposed to 10% equibiaxial or pure uniaxial stretch at 1Hz for 6 hours. In all cases, cell attachment and cell viability were high. On soft substrates, VICs cultured statically exhibit a small rounded morphology, significantly smaller than on stiff substrates (p<0.05). Following equibiaxial cyclic stretch, VICs spread to the extent of cells cultured on stiff substrates, but did not reorient in response to uniaxial stretch to the extent of cells stretched on stiff substrates. hMSCs exhibited a less pronounced response than VICs, likely due to a lower stiffness threshold for spreading on static gels. These preliminary data demonstrate that inhibition of spreading due to a lack of matrix stiffness surrounding a cell may be overcome by externally applied stretch suggesting similar mechanotransduction mechanisms for sensing stiffness and stretch.  相似文献   

12.
Cell culture models that mimic long-term exposure to microgravity provide important insights into the cellular biological adaptations of human skeletal muscle to long-term residence in space. We developed insert scaffolding for the NASA-designed rotating cell culture system (RCCS) in order to study the effects of time-averaged microgravity on the proliferation and differentiation of anchorage-dependent skeletal muscle myocytes. We hypothesized that prolonged microgravity exposure would result in the retardation of myocyte differentiation. Microgravity exposure in the RCCS resulted in increased cellular proliferation. Despite shifting to media conditions promoting cellular differentiation, 5 d later, there was an increase in cell number of approximately 62%, increases in total cellular protein (52%), and cellular proliferating cell nuclear antigen (PCNA) content (2.7 times control), and only a modest (insignificant) decrease (10%) in sarcomeric myosin protein expression. We grew cells in an inverted orientation on membrane inserts. Changes in cell number and PCNA content were the converse to those observed for cells in the RCCS. We also grew cells on inserts at unit gravity with constant mixing. Mixing accounted for part, but not all, of the effects of microgravity exposure on skeletal muscle cell cultures (53% of the RCCS effect on PCNA at 4-6 d). In summary, the mechanical effects of simulated microgravity exposure in the RCCS resulted in the maintenance of cellular proliferation, manifested as increases in cell number and expression of PCNA relative to control conditions, with only a modest reciprocal inhibition of cellular differentiation. Therefore, this model provides conditions wherein cellular differentiation and proliferation appear to be uncoupled.  相似文献   

13.
There is considerable current interest in the possible beneficial health effects of quercetin, catechins, epigallocatechins, epigallocatechin gallates, and related phenolic compounds found in teas, wines, and other plant products. As a result, many laboratories are studying the effects of these compounds on cells in culture. The present paper shows that addition of these compounds to commonly used cell culture media leads to generation of substantial amounts of hydrogen peroxide (H(2)O(2)). Dulbecco's modified Eagle medium gives the highest H(2)O(2) level for all the compounds tested, with levels reaching >400 microM within 2 h for addition of 1 mM concentrations of gallic acid, epigallocatechin gallate, and epigallocatechin. Catechin and quercetin produced lower, but still significant, levels of H(2)O(2). McCoy's 5A and RPMI 1640 media also promoted H(2)O(2) production from the above phenolic compounds. This rapid generation of H(2)O(2) could account for some or all of the reported effects of phenolic compounds on cells in culture.  相似文献   

14.
It is increasingly clear that oxygen tension exerts potent effects on many biologic processes in a range well above that at which aerobic metabolism is compromised. Cell culture ex vivo is traditionally performed in unstirred liquid media at ambient oxygen concentrations in the laboratory, with no attention to the level of oxygen experienced by the cells. This is certainly not reflecting physiology, and oxygenation may be further altered during cell handling and extraction procedures. The hypoxia-inducible factor pathway illustrates the potential for oxygen tension to have dramatic effects in terms of post-translational modification of proteins, and to influence a broad range of cellular pathways including those involved in substrate transport, metabolic pathways, growth factor signaling and differentiation. While the standard laboratory approach may remain suitable for many biologic applications, there are other situations in which more attention to oxygenation will be appropriate. This review discusses a workstation that allows investigators to manipulate oxygenation.  相似文献   

15.
BACKGROUND: Eukaryotic cell motility plays a key role during development, wound healing, and tumour invasion. Computer-assisted image analysis now makes it a realistic task to quantify individual cell motility of a large number of cells. However, the influence of culture conditions before and during measurements has not been investigated systematically. METHODS: We have evaluated intraassay and interassay variations in determinations of cellular speed of fibroblastoid L929 cells and investigated the effects of a series of physical and biological parameters on the motile behavior of this cell line. Cellular morphology and organization of filamentous actin were assessed by means of phase-contrast and confocal laser scanning microscopy and compared to the corresponding motility data. RESULTS: Cell dissociation procedure, seeding density, time of cultivation, and substrate concentration were shown to affect cellular speed significantly. pH and temperature of the medium most profoundly influenced cell motility and morphology. Thus, the mean cell speed was 40% lower at pH 7.25 than at pH 7.6; at 29 degrees C, it was approximately four times lower than at 39 degrees C. CONCLUSION: Of the parameters evaluated, cell motility was most strongly affected by changes in pH and temperature. In general, changes in cell speed were accompanied by alterations in cell morphology and organization of filamentous actin, although no consistent phenotypic characteristics could be demonstrated for cells exhibiting high cell speed.  相似文献   

16.
Hydrogen peroxide (H2O2) is widely regarded as a cytotoxic agent whose levels must be minimized by the action of antioxidant defence enzymes. In fact, H2O2 is poorly reactive in the absence of transition metal ions. Exposure of certain human tissues to H2O2 may be greater than is commonly supposed; levels of H2O2 in the human body may be controlled not only by catabolism but also by excretion, and H2O2 could play a role in the regulation of renal function and as an antibacterial agent in the urine. Cell culture is a widely used method for the investigation of "physiological" processes such as signal transduction and regulation of gene expression, but chemical reactions involving cell culture media are rarely considered. Addition of reducing agents to commonly used cell-culture media can lead to generation of substantial amounts of H2O2. Some or all of the reported effects of ascorbic acid and polyphenolic compounds (e.g., quercetin, catechin, epigallocatechin, epigallocatechin gallate) on cells in culture may be due to H2O2 generation by interaction of these compounds with cell culture media.  相似文献   

17.
Passive stretch (10–12%) of tissue-cultured avian skeletal myotubes in serum-containing medium stimulates myotube growth in a manner analogous to hormonal stimulation of adult muscle. The resulting increase in myotube length is accompanied by marked reduction in the number of surface microvilli seen by scanning electron microscopy. We investigated the possible involvement of exogenous growth factors in the transduction of stretch-induced alterations in cell shape into the concurring biochemical changes that are associated with cell growth. We show that the acute stimulation of myotube amino acid transport and protein synthesis by stretch are independent of serum growth factors in the culture medium by evidence obtained from serum dose-response experiments. The myotubes synthesize and secrete high molecular weight factors into their culture medium, which regulates myotube amino acid transport and protein synthesis. Stretch of the myotubes did not alter the appearance of these factors in the culture medium. The initial growth-related biochemical alterations induced by myotube stretch in vitro thus depend only on events intrinsic to the cells. However, subsequent stretch-induced growth of the myotubes occurs only in serum-containing medium. There are both serum-independent and serum-dependent steps in the transduction of the stretch stimulus into myotube growth.  相似文献   

18.
Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI) treatment. In the present study, primary rat alveolar type II (ATII) cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA) disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.  相似文献   

19.
A cell line, IGROV1, originating from a human ovarian cancer, releases a galactosyltransferase activity in its culture medium during proliferation. The proliferating IGROV1 cells appear as two populations: some cells grow in floating clusters whereas the greater part of them adhere to the culture substrate. The study of galactose transfer by intact cells onto an exogenous glycoprotein acceptor (ovomucoid) shows the presence of surface-associated galactosyltransferase onto the two cellular sub-populations. Opposite to intracellular activity, surface-associated and released galactosyltransferase activities depend on cellular adhesion and proliferation.  相似文献   

20.
Cytoplasmic transport of large molecules such as plasmid DNA (pDNA) has been shown to increase when cells are subjected to mild levels of cyclic stretch for brief periods. In the case of pDNA, this is in part due to the increased active transport of pDNA along stabilized, acetylated microtubules in the cytoplasm, whose levels are increased in response to stretch. It also has been shown that disruption of the dense actin network leads to increased pDNA and macromolecule diffusion as well. We hypothesize that stretch not only increases active transport of pDNA but also, similar to actin disrupting drugs, decreases cytoplasmic stiffness leading to a less restive pathway for macromolecules to diffuse. To test this we used particle tracking microrheology to measure cytoplasmic mechanics. We conclude that while cyclic stretch transiently decreases cytoplasmic stiffness and increases diffusivity, stretch‐independent modulation of the levels of acetylated, stable microtubules has no effect on cytoplasmic stiffness. Furthermore, stretching cells that have maximally acetylated microtubules increases cytoplasmic trafficking of pDNA, without increasing levels of acetylated microtubules. These findings suggest that stretch‐enhanced gene transfer may occur by two independent mechanisms: increased levels of acetylated microtubules for directed active transport, and reduced cytoplasmic stiffness for increased diffusion. Biotechnol. Bioeng. 2011;108: 446–453. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号