首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcohol consumption in mice suppresses the cytolytic activity of natural killer (NK) and lymphokine-activated killer (LAK) cells through unknown mechanisms. Herein, we found that alcohol consumption decreased target cell-induced release of granzyme A activity in freshly isolated splenic NK cells, in NK cells stimulated for 18 h with 1000 IU/ml of interleukin 2, and in LAK cells. The total activity and protein expression of granzymes A and B also were lower in these cells than in cells isolated from water-drinking mice. Interleukin 2 increased granzyme A protein expression independent of alcohol consumption; however, this increase was associated with decreased enzyme activity. In contrast, granzyme B protein expression and enzymatic activity increased in response to interleukin 2. Perforin activity and protein expression were reduced in LAK cells generated from alcohol-consuming mice. We conclude that the mechanism underlying the suppression of NK and LAK cytolytic activity by alcohol consumption involves the collective reduction of target-induced release, activity, and expression of perforin and granular proteases.  相似文献   

2.
B lymphocyte egress from secondary lymphoid organs requires sphingosine-1-phosphate (S1P) and S1P receptor-1 (S1P1). However, whether S1P contributes to immature-B cell egress from the bone marrow (BM) has not been fully assessed. Here we report that in S1P- and S1P1-conditionally deficient mice, the number of immature-B cells in the BM parenchyma increased, while it decreased in the blood. Moreover, a slower rate of bromodeoxyuridine incorporation suggested immature-B cells spent longer in the BM of mice in which S1P1-S1P signaling was genetically or pharmacologically impaired. Transgenic expression of S1P1 in developing B cells was sufficient to mobilize pro- and pre-B cells from the BM. We conclude that the S1P1-S1P pathway contributes to egress of immature-B cells from BM, and that this mechanism is partially redundant with other undefined pathways.  相似文献   

3.
Many prion diseases are peripherally acquired (e.g., orally or via lesions to skin or mucous membranes). After peripheral exposure, prions replicate first upon follicular dendritic cells (FDC) in the draining lymphoid tissue before infecting the brain. However, after replication upon FDC within the draining lymphoid tissue, prions are subsequently propagated to most nondraining secondary lymphoid organs (SLO), including the spleen, by a previously underdetermined mechanism. The germinal centers in which FDC are situated produce a population of B cells that can recirculate between SLO. Therefore, we reasoned that B cells were ideal candidates by which prion dissemination between SLO may occur. Sphingosine 1-phosphate receptor (S1PR)1 stimulation controls the egress of T and B cells from SLO. S1PR1 signaling blockade sequesters lymphocytes within SLO, resulting in lymphopenia in the blood and lymph. We show that, in mice treated with the S1PR modulator FTY720 or with S1PR1 deficiency restricted to B cells, the dissemination of prions from the draining lymph node to nondraining SLO is blocked. These data suggest that B cells interacting with and acquiring surface proteins from FDC and recirculating between SLO via the blood and lymph mediate the initial propagation of prions from the draining lymphoid tissue to peripheral tissues.  相似文献   

4.
We previously found that chronic alcohol consumption decreases the survival of mice bearing subcutaneous B16BL6 melanoma. The underlying mechanism is still not completely understood. Antitumor T cell immune responses are important to inhibiting tumor progression and extending survival. Therefore, we examined the effects of chronic alcohol consumption on the functionality and regulation of these cells in C57BL/6 mice that chronically consumed 20% (w/v) alcohol and subsequently were inoculated subcutaneously with B16BL6 melanoma cells. Chronic alcohol consumption inhibited melanoma-induced memory T cell expansion and accelerated the decay of interferon (IFN)-γ producing T cells in the tumor-bearing mice. Foxp3+CD4+CD25+ regulatory T cells were not affected; however, the percentage of myeloid-derived suppressor cells (MDSC) was significantly increased in the peripheral blood and spleen. T cell proliferation as determined by carboxyfluorescein succinimidyl ester labeling experiments in vitro was inhibited by alcohol consumption relative to control water-drinking melanoma-bearing mice. Collectively, these data show that chronic alcohol consumption inhibits proliferation of memory T cells, accelerates the decay of IFN-γ producing CD8+ T cells, and increases MDSC, all of which could be associated with melanoma progression and reduced survival.  相似文献   

5.
NK cells in the lymph nodes play important roles in inhibiting tumor metastasis into draining lymph nodes. Previously, we reported that chronic alcohol consumption interferes with NK cell trafficking from the bone marrow to the spleen. Herein, we found that alcohol consumption decreases the numbers of NK cells in lymph nodes. Adoptive transfer experiments indicated that continued exposure of donor splenocytes to alcohol inhibits NK but not T cell trafficking to lymph nodes. Alcohol did not negatively affect CCR7+ and CXCR3+ NK cells, but decreased the percentage and number of CD62L+ NK cells in the spleen, which are an important source of NK cell trafficking into the lymph nodes. These data suggest that modulation of the microenvironment associated with alcohol consumption impairs the trafficking of NK cells to lymph nodes. The decreased number of NK cells in the lymph nodes was associated with increased melanoma metastasis into the draining lymph nodes.  相似文献   

6.
We previously found that chronic alcohol consumption decreases the survival of mice bearing subcutaneous B16BL6 melanoma. The underlying mechanism is still not completely understood. Antitumor T cell immune responses are important to inhibiting tumor progression and extending survival. Therefore, we examined the effects of chronic alcohol consumption on the functionality and regulation of these cells in C57BL/6 mice that chronically consumed 20% (w/v) alcohol and subsequently were inoculated subcutaneously with B16BL6 melanoma cells. Chronic alcohol consumption inhibited melanoma-induced memory T cell expansion and accelerated the decay of interferon (IFN)-γ producing T cells in the tumor-bearing mice. Foxp3+CD4+CD25+ regulatory T cells were not affected; however, the percentage of myeloid-derived suppressor cells (MDSC) was significantly increased in the peripheral blood and spleen. T cell proliferation as determined by carboxyfluorescein succinimidyl ester labeling experiments in vitro was inhibited by alcohol consumption relative to control water-drinking melanoma-bearing mice. Collectively, these data show that chronic alcohol consumption inhibits proliferation of memory T cells, accelerates the decay of IFN-γ producing CD8+ T cells, and increases MDSC, all of which could be associated with melanoma progression and reduced survival.  相似文献   

7.
B cell development is exquisitely sensitive to location within specialized niches in the bone marrow and spleen. Location within these niches is carefully orchestrated through chemotactic and adhesive cues. In this article, we demonstrate the requirement for the actin-bundling protein L-plastin (LPL) in B cell motility toward the chemokines CXCL12 and CXCL13 and the lipid chemoattractant sphingosine-1-phosphate, which guide normal B cell development. Impaired motility of B cells in LPL(-/-) mice correlated with diminished splenic maturation of B cells, with a moderate (40%) loss of follicular B cells and a profound (>80%) loss of marginal zone B cells. Entry of LPL(-/-) B cells into the lymph nodes and bone marrow of mice was also impaired. Furthermore, LPL was required for the integrin-mediated enhancement of Transwell migration but was dispensable for integrin-mediated lymphocyte adhesion. These results suggest that LPL may participate in signaling that enables lymphocyte transmigration. In support of this hypothesis, the phosphorylation of Pyk-2, a tyrosine kinase that integrates chemotactic and adhesive cues, is diminished in LPL(-/-) B cells stimulated with chemokine. Finally, a well-characterized role of marginal zone B cells is the generation of a rapid humoral response to polysaccharide Ags. LPL(-/-) mice exhibited a defective Ab response to Streptococcus pneumoniae, indicating a functional consequence of defective marginal zone B cell development in LPL(-/-) mice.  相似文献   

8.
A functional sphingosine-1-phosphate (S1P) receptor antagonist specifically inhibited the egress of activated allospecific T cells from draining popliteal lymph nodes in alloantigen-sensitised mice. The level of S1P receptor 1 (S1PR1) mRNA was similarly reduced 1 and 3 days after mitogenic activation of T cells. However, the response of these cells to the S1PR1-specific agonist SEW2871 was only reduced on the first day after T cell activation with normal receptor-mediated Akt-phosphorylation restored by day 3. Longitudinal analysis of CD69 expression showed that almost all T cells expressed this antigen on days 1 and 3 after activation. However, the absolute level of cell-surface expression of CD69 peaked on undivided T cells and was then halved by each of the first 3 cycles of mitosis. CD69-specific small interfering RNA (siRNA) reduced the maximal level of CD69 expression by undivided, mitogen-stimulated T cells. These cells retained their capacity to phosphorylate Akt in response to stimulation with SEW2871. These data show that S1P receptors are involved in controlling the egress of activated T cells from lymph nodes, and that S1PR1 function is regulated by the level of T cell surface CD69. They suggest a potential for augmentation of this process to deplete alloreactive effector cells after organ transplantation.  相似文献   

9.
Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells.  相似文献   

10.
Our study was aimed to characterize the phenotype and functional endpoints of local microwave hyperthermia (LHT, 42 degrees C) on tumor infiltrating and spleen leukocytes. The effectiveness of LHT applied into the tumor of B16F10 melanoma-bearing C57/BL6 mice was compared with anesthetized and non-treated animals. Subpopulations of leukocytes were analyzed using the flow cytometry, and the cytotoxic activity of splenocytes against syngeneic B16F10 melanoma and NK-sensitive YAC-1 tumor cell lines was evaluated in (51)Cr-release assay. Similarly, the in vitro modification of the heat treatment was performed using healthy and melanoma-bearing splenocytes. We found a 40 % increase of activated monocytes (CD11b+CD69+) infiltration into the tumor microenvironment. In the spleen of experimental animals, the numbers of cytotoxic T lymphocytes (CTLs-CD3+CD8+) and NK cell (CD49b+NK1.1+) raised by 22 % and 14 %, respectively, while the NK1.1+ monocytes decreases by 37 %. This was accompanied by an enhancement of cytotoxic effector function against B16F10 and YAC-1 targets in both in vivo and in vitro conditions. These results demonstrate that LHT induces better killing of syngeneic melanoma targets. Furthermore, LHT evokes the homing of activated monocytes into the tumor microenvironment and increases the counts of NK cells and CTL in the spleen.  相似文献   

11.
Sphingosine 1-phosphate (S1P) initiates T and B cell exit from lymphoid tissues by activating the S1P(1) receptor on lymphocytes. To define the mechanistic details of this ligand-receptor interaction, the biological activity of the S1P-blocking Ab Sphingomab was investigated. Treatment of mice with Sphingomab resulted in blood B and T cell lymphopenia. Although Sphingomab blocked S1P(1)-mediated calcium flux and receptor downregulation by S1P in vitro, plasma from Sphingomab-treated mice demonstrated a 4-fold increase in S1P concentration and largely retained its stimulating activity on S1P receptors. Plasma-borne S1P was obviously not sufficiently inactivated by Sphingomab to account for the observed lymphopenia. Therefore, we addressed the local S1P-blocking activity of Sphingomab in spleen and peripheral lymph nodes (pLNs) as a potential cause of PBL depletion. Transwell chemotaxis assays revealed the migration of freshly isolated splenocytes, but not pLN cells to S1P. However, chemotaxis of pLN cells was regained after culture in S1P-low medium, and pLN cells isolated from Sphingomab-treated mice also revealed enhanced chemotaxis to S1P, indicating substantial local inactivation of S1P in pLN after Sphingomab treatment. We conclude that treatment with the S1P-blocking Ab Sphingomab induces lymphopenia by inactivating S1P locally in pLN and not systemically in plasma. Consequently, the presence of local S1P amounts in secondary lymphoid organs contributes to B and T cell egress.  相似文献   

12.
Selective impairment of B cell function by Neisseria meningitidis   总被引:1,自引:0,他引:1  
Spleen cells from CBA/J mice infected with Neisseria meningitidis displayed depressed in vitro plaque-forming cell (PFC) responses to T-dependent (sheep red blood cell; SRBC) and T-independent (TNP-LPS, TNP-Ficoll) antigens. The inhibition was observed over a wide range of antigen concentrations. The decreased responsiveness of splenocytes from infected mice was due to a selective impairment of B-cell function since helper-T-cell activity was intact in infected mice as shown by the ability of T-enriched lymphocytes to cooperate with normal B-enriched lymphocytes in the generation of an anti-SRBC response, accessory macrophage function was preserved since adherent spleen cells from bacteria-injected mice were shown to produce normal or increased levels of IL-1 and were able to cooperate with normal non-adherent spleen cells in the generation of PFC against SRBC. Addition of peritoneal cells from normal animals or extraneous IL-1 both failed to restore normal PFC responses in cultures of splenocytes from infected mice. Finally, B-enriched lymphocytes from infected mice produced poor anti-SRBC responses when cultured with either Con A supernatant or T-enriched lymphocytes from normal or infected mice. Cell-mixing experiments failed to detect the presence of suppressor cells in cultures of unfractionated spleen cells or B-enriched lymphocytes from infected mice. Therefore, the immunological unresponsiveness associated with a Neisseria meningitidis infection was attributed to a meningococcus-induced defect(s) in B-cell function. In vivo polyclonal B-cell activation leading to clonal exhaustion did not play a major role in the depression of humoral responses since meningococcal infection induced little or no polyclonal Ig secretion.  相似文献   

13.
The functional activity of splenocytes and thymocytes of mice tolerant to sheep red blood cells was investigated one and four weeks after tolerance induction. The tolerance was achieved by cyclophosphamide. The immunocompetence of thymocytes was fully reversed in lfour week time. The functional activity of T and B lymphocytes of the spleen was also partially recovered four weeks after tolerance induction. Preliminary thymectomy weakened but did not prevent completely the immunocompetence of T cells of the spleen from being recovered. No Tsuppressants were found in the thymus or spleen of the tolerant animals.  相似文献   

14.
HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer. HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein that binds to SR-BI''s C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1 activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires the activities of the HDL receptor SR-BI as well as S1PR1 activity.  相似文献   

15.

Background

Postoperative ileus is characterized by a transient impairment of the gastrointestinal motility after abdominal surgery. The intestinal inflammation, triggered by handling of the intestine, is the main factor responsible for the prolonged dysmotility of the gastrointestinal tract. Secondary lymphoid organs of the intestine were identified as essential components in the dissemination of inflammation to the entire gastrointestinal tract also called field effect. The involvement of the spleen, however, remains unclear.

Aim

In this study, we investigated whether the spleen responds to manipulation of the intestine and participates in the intestinal inflammation underlying postoperative ileus.

Methods

Mice underwent Laparotomy (L) or Laparotomy followed by Intestinal Manipulation (IM). Twenty-four hours later, intestinal and colonic inflammation was assessed by QPCR and measurement of the intestinal transit was performed. Analysis of homeostatic chemokines in the spleen was performed by QPCR and splenic cell populations analysed by Flow Cytometry. Blockade of the egress of cells from the spleen was performed by administration of the Sphingosine-1-phosphate receptor 1 (S1P1) agonist CYM-5442 10 h after L/IM.

Results

A significant decrease in splenic weight and cellularity was observed in IM mice 24 h post-surgery, a phenomenon associated with a decreased splenic expression level of the homeostatic chemokine CCL19. Splenic denervation restored the expression of CCL19 and partially prevented the reduction of splenocytes in IM mice. Treatment with CYM-5442 prevented the egress of splenocytes but did not ameliorate the intestinal inflammation underlying postoperative ileus.

Conclusions

Intestinal manipulation results in two distinct phenomena: local intestinal inflammation and a decrease in splenic cellularity. The splenic response relies on an alteration of cell trafficking in the spleen and is partially regulated by the splenic nerve. The spleen however does not participate in the intestinal inflammation during POI.  相似文献   

16.
Fumonisin B1 induces cytotoxicity in sensitive cells by inhibiting ceramide synthase due to its structural similarity to the long-chain backbones of sphingolipids. The resulting accumulation of sphingoid bases has been established as a mechanism for fumonisin B1 cytotoxicity. We found that despite the accumulation of sphinganine, human embryonic kidney (HEK-293) cells are resistant to fumonisin B1 toxicity; 25 microM fumonisin B1 exposure for 48 h did not increase apoptosis in these cells, while it did so in sensitive porcine kidney epithelial (LLC-PK1) cells. In this study, DL-threo-dihydrosphingosine, the sphingosine kinase inhibitor (SKI), considerably increased the sensitivity of HEK-293 cells to fumonisin B1. Treatment of these cells with 25 microM fumonisin B1 and 2.5 microM SKI increased apoptosis. Sphingoid bases, sphinganine or sphingosine, added to cell cultures induced apoptosis by themselves and their effects were potentiated by SKI or fumonisin B1. Addition of physiological amounts of sphingosine-1-phosphate prevented the toxic effects induced by SKI inhibition and fumonisin B1. Results indicated that HEK-293 cells are resistant to fumonisin B1 due to rapid formation of sphingosine-1-phosphate that imparts survival properties. Taken together, these findings suggest that sphingoid base metabolism by sphingosine kinase may be a critical event in rendering the HEK-293 cells relatively resistant to fumonisin B1-induced apoptosis.  相似文献   

17.
Syndecan-4 participates in focal adhesion by non-G protein-dependent activation of protein kinase C. Ligation of syndecan-4 with antithrombin elicits pertussis toxin-sensitive chemotaxis of leukocytes. As activation of protein kinase C stimulates release of sphingosine-1-phosphate, a chemoattracting G protein-coupled receptor agonist, we studied directional migration of leukocytes in response to phorbol myristate acetate (PMA), a direct activator of protein kinase C. Human peripheral blood neutrophils, monocytes, and lymphocytes were purified and tested for chemotactic migration in micropore filter assays in response to PMA. Dose-dependent stimulation of migration was seen only when leukocytes were exposed to concentration gradients of PMA; in the absence of such a gradient, inhibition of random migration was induced. Dimethylsphingosine inhibited PMA-induced leukocyte chemotaxis, indicating that activation of sphingosine kinase for enhanced production of sphingosine-1-phosphate mediates the chemotactic response to PMA. Pertussis toxin abrogated the chemotactic response to PMA, suggesting involvement of G protein-coupled sphingosine-1-phosphate receptor. Dimethylsphingosine also inhibited leukocyte chemotaxis toward antithrombin, indicating that similar mechanisms may be involved upon syndecan-4 ligation. Data show that protein kinase C-dependent activation of sphingosine kinase may play a central role in leukocyte chemotaxis toward non-G protein-coupled receptor agonists.  相似文献   

18.
Elevated central concentrations of the vasopressor octapeptide angiotensin (Ang) II increase the water intake in mammals. Recently, we showed that central AngII is also crucial in alcohol-consuming behavior. Since the heptapeptide AngIII, an AngII metabolite, is discussed to mediate AngII-related effects, we investigated water and alcohol consumption in mice, genetically deficient in aminopeptidase A (APA), a peptidase responsible for AngII conversion to AngIII. Sixteen male APA-deficient mice and their age matched wild-type controls were monitored on their water intake under basal conditions and total fluid and alcohol intake before and after social stress in a two-bottle free-choice paradigm. Alterations were connected to the regulation in activity of Ang-related peptidases (APA, ACE; ACE2) in brain regions involved in alcohol intake and peripheral organs. In comparison to their wild-type controls, APA-deficient mice drank significantly more water but not more alcohol at all investigated time points. A reduction in water intake, as observed in wild-type animals after social stress, did not occur in knockout mice. However, the reduction in alcohol consumption after social stress was significantly reduced in both strains. Alcohol consumption upregulated all three peptidases in the kidney, but not in lung. Notable, renal ACE2 activity was significantly higher in APA-deficient mice under basal condition. While the inhibition of AngII metabolism to AngIII does not influence the alcohol intake, water consumption in mice deficient for APA was significantly elevated. These differences induced by an altered AngII/AngIII ratio oppose the hypothesis that central AngII and AngIII act in a congruent pattern.  相似文献   

19.
New anticancer vaccines must overcome regulatory T cell (Treg)-mediated immunosuppression. We previously reported that oral ingestion of Lentinula edodes mycelia (L.E.M.) extract restores melanoma-reactive T cells in melanoma-bearing mice via a mitigation of Treg-mediated immunosuppression. In this study, we investigated the effect of oral ingestion of the extract on peptide vaccine-induced anti-tumor activity. The day after subcutaneous inoculation in the footpad with B16 melanoma, mice were freely fed the extract and were vaccinated with a tyrosinase-related protein 2180–188 peptide. The peptide vaccine was repeated thrice weekly. Melanoma growth was significantly suppressed in mice treated with both the peptide vaccine and L.E.M. extract compared with mice treated with vaccine or extract alone, and the effect was CD8+ T cell-dependent. The combination therapy increased H-2Kb-restricted and B16 melanoma-reactive T cells in the draining lymph nodes and spleen. Flow cytometric and immunohistological analyses revealed that the combination therapy significantly decreased the percentage of Tregs in the draining lymph nodes and spleen of melanoma-bearing mice compared to treatment with vaccine or extract alone. Kinetic analyses of peptide-specific T cells and Tregs revealed that induction of peptide-specific T cells by the peptide vaccine alone was transient, but when combined with L.E.M. extract, it efficiently prolonged the duration of peptide-specific T cell induction without increasing the percentage of Tregs. These results indicate that combination therapy enhances peptide vaccine-induced anti-tumor activity due to attenuation of the increase in the percentage of Tregs in tumor-bearing hosts.  相似文献   

20.
Extending earlier studies, this report demonstrates that Leishmania infantum heat shock proteins (Hsps), Hsp70 and Hsp83, expressed as recombinant proteins fused to the Escherichia coil maltose-binding protein (MBP), are potent mitogens for murine splenocytes. The response was not due to lipopolysaccharide (LPS) because the stimulatory activity of Hsp preparations was sensitive to boiling and trypsin treatments, whereas the corresponding activity of LPS was resistant to both treatments. It was found that in vitro incubation of spleen cells with the Leishmania Hsps leads to the expansion of CD220-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. In fact, splenocytes from B cell-deficient mice did not proliferate in response to the Leishmania Hsps. In contrast, spleen cells from athymic nude mice were significantly stimulated by these recombinant proteins as an indication that the MBP-Hsp70 and MBP-Hsp83 recombinant proteins behave as T cell-independent mitogens of B cells. Furthermore, both proteins were able to induce proliferation on B cell populations purified from BALB/c spleen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号