首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The fumB gene of Escherichia coli, which complements the fumarase deficiency of a fumA mutant when present in multiple copies, has been located at 93.5 min in the E. coli linkage map and its product has been identified as a polypeptide of 61 kDal. Four overlapping ColE1-fumB+ plasmids representing a continuous segment of 23.3 kb of bacterial DNA have been isolated from the Clarke-Carbon E. coli gene bank and the location of the fumB gene relative to the restriction map and the adjacent mel operon has been defined. Hybridization studies have shown that the fumB gene is homologous to the fumA gene, which complements the fumA1 mutation in single and multi-copy situations, and encodes an analogous 61 kDal product formerly regarded as the E. coli fumarase. The hybridization studies also showed that the Bacillus subtilis fumarase gene (citG) is homologous to an independent gene, fumC (formerly g48), which lies adjacent to the fumA gene at 35.5 min in the E. coli linkage map. The N-terminal sequences of the citG and fumC products exhibit a 51% identity over 88 residues. It is possible that the fumC and citG genes are fumarase structural genes of E. coli and B. subtilis, and that the fumA gene may encode a differentially-regulated fumarase or be a positive regulator gene which is essential for the expression of fumC (but not citG). If so, the fumB gene may encode a related enzyme or activator that can replace the fumA function when amplified.  相似文献   

2.
3.
4.
5.
6.
7.
8.
D H Flint  M H Emptage  J R Guest 《Biochemistry》1992,31(42):10331-10337
It has been shown previously that Escherichia coli contains three fumarase genes designated fumA, fumB, and fumC. The gene products fumarases A, B, and C have been divided into two classes. Class I contains fumarases A and B, which have amino acid sequences that are 90% identical to each other, but have almost no similarity to the sequence of porcine fumarase. Class II contains fumarase C and porcine fumarase, which have amino acid sequences 60% identical to each other [Woods, S.A., Schwartzbach, S.D., & Guest, J.R. (1988) Biochim. Biophys. Acta 954, 14-26]. In this work it is shown that purified fumarase A contains a [4Fe-4S] cluster. This conclusion is based on the following observations. Fumarase A contains 4 Fe and 4 S2- per mole of protein monomer. (The mobility of fumarase A in native polyacrylamide gel electrophoresis and the elution volume on a gel permeation column indicate that it is a homodimer.) Its visible and circular dichroism spectra are characteristic of proteins containing an Fe-S cluster. Fumarase A can be reduced to an EPR active-state exhibiting a spectrum consisting of a rhombic spectrum at high fields (g-values = 2.03, 1.94, and 1.88) and a broad peak at g = 5.4. Upon addition of substrate, the high field signal shifts upfield (g-values = 2.035, 1.92, and 1.815) and increases in total spins by 8-fold, while the g = 5.4 signal disappears.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Kim SJ  Han YH  Kim IH  Kim HK 《IUBMB life》1999,48(2):215-218
To explore the oxygen response regulators involved in thiol peroxidase gene (tpx) expression in Escherichia coli, we constructed a single-copy tpx-lacZ operon fusion and monitored tpx-lacZ expression in various genetic backgrounds. Expression of the tpx-lacZ fusion was increased 4-fold by aerobic growth. Anaerobic expression of tpx-lacZ in either (delta)arcA or delta(fnr) strains was 2.5-fold depressed compared with that of the wild-type strain. The results of immunoblotting experiments also demonstrated that ArcA and Fnr regulatory proteins repressed thiol peroxidase gene expression during anaerobic growth. Inspection of the tpx promoter region revealed putative binding sites for ArcA and Fnr. It thus appears that ArcA and Fnr function as repressors by blocking the binding of RNA polymerase to the tpx promoter in E. coli under anaerobic growth conditions.  相似文献   

10.
11.
12.
13.
Most Escherichia coli (E. coli) strains do not cause disease, naturally living in the lower intestine and is expelled into the environment within faecal matter. Escherichia coli can utilize citrate under anaerobic conditions but not aerobic conditions. However, the underlying regulatory mechanisms are poorly understood. In this study, we explored regulatory mechanisms of citrate fermentation genes by global regulators ArcA and Fnr under anaerobic conditions. A gel mobility shift assay showed that the regulator proteins ArcA and Fnr binded to the promoter region localized between the citAB and citCDEFXGT operons. Subsequent assays confirmed that ArcA indirectly controled the expression of citrate fermentation genes via regulating CitA-CitB system, while Fnr directly regulated but also indirectly modulated citrate fermentation genes via controling CitA-CitB system. Deletions of arcA and fnr significantly reduced the growth of Escherichia coli in M9 medium with a citrate carbon source. We conclude that both ArcA and Fnr can indirectly control the citrate utilization via CitA-CitB system, while Fnr can also directly regulate the expression of citrate fermentation genes in E. coli under anaerobic conditions.  相似文献   

14.
15.
16.
Two biochemically distinct classes of fumarase in Escherichia coli   总被引:8,自引:0,他引:8  
Biochemical studies with strains of Escherichia coli that are amplified for the products of the three fumarase genes, fumA (FUMA), fumB (FUMB) and fumC (FUMC), have shown that there are two distinct classes of fumarase. The Class I enzymes include FUMA, FUMB, and the immunologically related fumarase of Euglena gracilis. These are characteristically thermolabile dimeric enzymes containing identical subunits of Mr 60,000. FUMA and FUMB are differentially regulated enzymes that function in the citric acid cycle (FUMA) or to provide fumarate as an anaerobic electron acceptor (FUMB), and their affinities for fumarate and L-malate are consistent with these roles. The Class II enzymes include FUMC, and the fumarases of Bacillus subtilis, Saccharomyces cerevisiae and mammalian sources. They are thermostable tetrameric enzymes containing identical subunits Mr 48,000-50,000. The Class II fumarases share a high degree of sequence identity with each other (approx. 60%) and with aspartase (approx. 38%) and argininosuccinase (approx. 15%), and it would appear that these are all members of a family of structurally related enzymes. It is also suggested that the Class I enzymes may belong to a wider family of iron-dependent carboxylic acid hydro-lyases that includes maleate dehydratase and aconitase. Apart from one region containing a Gly-Ser-X-X-Met-X-X-Lys-X-Asn consensus sequence, no significant homology was detected between the Class I and Class II fumarases.  相似文献   

17.
18.
19.
20.
Microarrays are widely used for gene expression profiling. In the case of prokaryotes such arrays usually provide data about composition of modulons, groups of genes whose expression is influenced by a single regulatory system or external stimulus. Unlike modulons, regulons include only genes directly controlled by regulatory systems. Here we compared the structures of the Fnr and ArcA modulons and regulons. The data about modulon composition were taken from published microarray assays, whereas regulons were characterized using comparative genomic approaches. The Fnr and ArcA regulons were shown to contain 26 and 16 operons, respectively. Ten operons had high-score and highly conserved site for both Fnr and ArcA. These genes are the "core of regulons". Remarkably, all "core genes" encode enzymes involved in aerobic respiration and central metabolism. The Fnr-ArcA regulatory cascade plays an important role in expansion of the Fnr modulon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号