首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Egg-specific and sperm-specific proteins fromLineus lacteus females and males were investigated byanalytical electrophoreses. These major sex-specificproteins define the sexual dimorphism of biochemicalmetabolism and are useful for studying vitellogenesisand spermatogenesis. The major yolk proteins in theeggs of the nemertean, Lineus lacteus, wereidentified by gradient gel electrophoresis. The 2vitellin proteins were designated vitellin V1 (460 kDa) andvitellin V2 (260 kDa). The vitellins wereidentified as lipoglycoproteins by selective staining.Three major vitellin subunits (75, 41 and 40 kDa) werefound in oocytes of L. lacteus byelectrophoresis under denaturing conditions(SDS-PAGE). Polyclonal antibodies were raised to eachvitellin subunit. The binding of these rabbitantibodies to vitellins V1 and V2 showed that vitellinV1 contained a single major 75 kDa polypeptide, whilevitellin V2 had two major polypeptides (41 and 40 kDa).Five male-specific proteins (52, 50, 41, 35 and 32 kDa) wereidentified in the sperm of Lineuslacteus by gradient gel electrophoresis. Four lowmolecular weight proteins (18–13 kDa) can also be usedas molecular markers of male sexual maturation. Theseproteins were nucleosomal core histones. The chromatinof L. lacteus sperm contained onlyhistones as no protamines or protamine-like proteinswere detected. But the sperm nucleosomal protein maynot be entirely somatic-histones, as a sperm-specifichistone (Sp H) was also found.  相似文献   

2.
Two soluble serine proteases Do and So from Escherichia coli were found to distinctively cleave the purified, 39 kDa Ada protein into fragments with sizes of 12-31 kDa. Protease So appears to generate a C-terminal 19 kDa polypeptide, similarly to OmpT protease. In addition, the purified 19 kDa C-terminal half of Ada protein can be further processed mainly to an 18 kDa fragment by protease So and to a 12 kDa by protease Do. These results suggest that proteases Do and So are involved in endogenous cleavage of Ada protein, which may play a role in down-regulating the adaptive response to alkylating agents.  相似文献   

3.
C A Peterson  J Piatigorsky 《Gene》1986,45(2):139-147
The primary structure of the beta 19/26-crystallin polypeptide of the chicken lens has been determined by cDNA sequencing and primer extension experiments. In addition, a primer extension experiment has corrected the sequence for the N-terminal arm of the murine beta 23 polypeptide, which is the homologue of the chicken beta 19/26 polypeptide. We also show that, in the chicken and mouse, the N-terminal arm of the polypeptide is encoded on two separate exons. For simplicity, we have changed the names of both chicken beta 19/26 and murine beta 23 to beta A3/A1, which is the name of the homologous bovine polypeptide. The deduced sequence of the chicken beta A3/A1 polypeptide fits the predicted three-dimensional structure involving two homologous domains, each folded into two 'Greek key' motifs, common to the beta gamma-crystallin superfamily of proteins. Comparison of the amino acid sequence of the chicken and mammalian beta A3/A1 polypeptides indicates that different regions of the protein, which are encoded on different exons, are diverging at different rates. The N-terminal extension is the fastest evolving region of the beta A3/A1 polypeptide. Hybrid-selected translation coupled with primer extension experiments suggest that a single chicken beta A3/A1 mRNA synthesizes two polypeptides, beta A3 (25 kDa) and beta A1 (23 kDa) by utilization of different translation initiation sites.  相似文献   

4.
Plasmodium vivax merozoite surface protein 1 (PvMSP1) is believed to be important in erythrocyte invasion. However, the detailed mechanism of PvMSP1-mediated invasion has been unclear. We demonstrate that the C-terminal 19 kDa domain (PvMSP119) of PvMSP1, the 42-kDa fragment of PvMSP1 is further cleaved to a 33 kDa N-terminal polypeptide and a 19 kDa C-terminal fragment in a secondary processing step, is a critical domain in the binding between parasite ligand and erythrocyte receptor. Also, its cytoadherence was successfully blocked by naturally acquired immunity, was partially sensitive to neuraminidase and trypsin. When expressed separately epidermal growth factor (EGF)-like motifs 1 and 2, subunits of the PvMSP119, mediated 64% and 66% of the erythrocyte-binding activity, respectively, relative to their expression together as a single intact ligand domain. These results suggest that the EGF-like motifs 1 and 2 of PvMSP119 function as a core-binding portion in the attachment of PvMSP1 to erythrocytes.  相似文献   

5.
Mitsue Miyao  Norio Murata 《BBA》1983,725(1):87-93
Treatment with 1 M NaCl almost totally removed two polypeptides of 24 and 18 kDa from the Photosystem II particles of spinach chloroplasts and reduced the oxygen-evolution activity by about half. Both polypeptides were able to rebind to the NaCl-treated particles in a low-salt medium. The rebinding of the 24 kDa polypeptide showed a saturation curve whose maximum level was close to that naturally occurring in the untreated particles. In parallel with the amount of rebound 24 kDa polypeptide, the oxygen-evolution activity was recovered. The 18 kDa polypeptide bound to the NaCl-treated particles without saturation. When the 18 kDa polypeptide was added to the particles previously treated with NaCl and then supplemented with a saturating amount of 24 kDa polypeptide, there appeared, in addition to the binding without saturation, another binding of the 18 kDa polypeptide with saturation to a maximum level close to that naturally occurring in the untreated particles. The 18 kDa polypeptide did not restore the oxygen-evolution activity. These findings suggest that there are specific binding sites; one for the 24 kDa polypeptide located on the Photosystem II particles, and the other for the 18 kDa polypeptide on the 24 kDa polypeptide.  相似文献   

6.
The NaGSL1 gene has been proposed to encode the callose synthase (CalS) enzyme from Nicotiana alata pollen tubes based on its similarity to fungal 1,3-beta-glucan synthases and its high expression in pollen and pollen tubes. We have used a biochemical approach to link the NaGSL1 protein with CalS enzymic activity. The CalS enzyme from N. alata pollen tubes was enriched over 100-fold using membrane fractionation and product entrapment. A 220 kDa polypeptide, the correct molecular weight to be NaGSL1, was specifically detected by anti-GSL antibodies, was specifically enriched with CalS activity, and was the most abundant polypeptide in the CalS-enriched fraction. This polypeptide was positively identified as NaGSL1 using both MALDI-TOF MS and LC-ESI-MS/MS analysis of tryptic peptides. Other low-abundance polypeptides in the CalS-enriched fractions were identified by MALDI-TOF MS as deriving from a 103 kDa plasma membrane H+-ATPase and a 60 kDa beta-subunit of mitochondrial ATPase, both of which were deduced to be contaminants in the product-entrapped material. These analyses thus suggest that NaGSL1 is required for CalS activity, although other smaller (<30 kDa) or low-abundance proteins could also be involved.  相似文献   

7.
The HIV-1 accessory protein Nef plays an active role in the pathogenesis of AIDS by its numerous cellular interactions that facilitate the release of virus particles. This 27?kDa protein is required for maintenance of the viral replication in HIV, and is also known to contribute to immune evasion, blocking of apoptosis in virus-infected cells and enhancement of virus infectivity. Nef has been shown to be secreted and is present on the surface of virus-infected cells. Recent studies from our laboratory have shown that the Nef protein is secreted from nef-transfected and HIV-1-infected cells in small exosome-like vesicles (40-100?nm diam.) that do not contain virions. We have identified three amino-terminal domains of Nef as necessary for secretion: (i) the four arginine residues (17,19,21, 22) comprising the basic region; (ii) the phosphofurin acidic cluster sequence (PACS) composed of four glutamic acid residues (61-64); (iii) a previously unknown motif spanning amino acid residues 65-69 (VGFPV) which we named the secretion modification region (SMR). In this study, we have used population-based phylogeny data and sequence analysis to characterize the conservation of the Nef SMR domain that regulates vesicle secretion. We have performed in silico computational chemistry analysis involving molecular dynamic structure modeling of mutations in the SMR motif. Sequence analysis of Nef from HIV-1-infected patients, including slow progressors (SP), long term progressors (LTP) and long term non-progressors (LTNP) demonstrated 99?% conservation of the Nef SMR motif. Computational analysis including modeling of wild-type HIV-1 Nef and V66A Nef SMR mutant using structural homology and molecular dynamics of ligand-associated interactions indicated significant structural changes in the Nef mutant, thus supporting the importance of the SMR domain for mediating Nef vesicle secretion.  相似文献   

8.
An abundant seed protein, which is exceptionally rich in the sulfur-containing amino acids, methionine (18%) and cysteine (8%), is synthesized in Brazil nut embryos about 9 months after flowering. This sulfur-rich protein consists of two low-molecular-mass polypeptide components, a 9-kDa polypeptide and a 3-kDa polypeptide. The two-subunit polypeptides associate through disulfide linkage(s) to form a 12-kDa protein molecule. We have demonstrated through in vitro translation studies, using RNA from 9-month-old embryos, that the sulfur-rich protein is synthesized as a larger precursor polypeptide of 18 kDa. In addition, data from in vivo labelling studies of 9-month-old Brazil nuts suggest that there are two intermediate precursors of the sulfur-rich protein, one of 15 kDa and another of 12 kDa. One of these precursors, the 12-kDa polypeptide, accumulates for a 2-month period in the developing embryos. From these data we infer that at least three stepwise cleavages are involved in the maturation of the sulfur-rich protein from its 18-kDa precursor.  相似文献   

9.
10.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

11.
The present work focuses on the growth phase regulated expression of biopterin transporter gene (BT1) from the LD1 locus on chromosome 35 of Leishmania donovani. Antiserum against recombinant BT1 detected a polypeptide of 45 kDa of equal intensity at lag, log and stationary phases of promastigote growth, both in L. donovani strain LSB-7.1 (MHOM/BL/67/ITMAP263), and strain LSB-146.1 (HOM/IR/95/X81), a natural isolate from Isfehan, Iran that caused cutaneous leishmaniasis. However, in both these strains an additional polypeptide of higher molecular mass (50 kDa) was also observed during lag phase only. In addition, polypeptides of 40, 20, 18 and 16 kDa were seen only during the lag and log phases of both strains. Analysis of L. donovani single, double and triple (null) BT1 knockout mutants confirmed that the 45-kDa polypeptide was the BT1 gene product, as it was absent in the null mutant. These results indicate that 45-kDa BT1 protein in Leishmania is consistently and constitutively expressed in all the growth stages of the parasite.  相似文献   

12.
Clathrin-coated vesicles (CCVs) are involved in selective protein transport in eukaryotes. AP-1 and AP-2 are protein complexes found in the CCVs of the Golgi apparatus and the plasma membrane respectively. AP19 is the smallest polypeptide chain components of AP-1. We have identified a cDNA clone (CAP19) encoding a putative homologue for the assembly protein AP19 from the Chinese medicinal tree, Camptotheca acuminata. The deduced polypeptide contains 161 amino acids and has a predicted M r of 18 820. DNA blot analysis suggests that the AP19s of C. acuminata are encoded by a small gene family. CAP19 was expressed ubiquitously throughout the plant suggesting that it may be involved in general Golgi-mediated secretion.  相似文献   

13.
The mammalian ERCC1-encoded polypeptide is required for nucleotide excision repair of damaged DNA and is homologous to Saccharomyces cerevisiae RAD10, which functions in repair and mitotic intrachromosomal recombination. Rodent cells representing repair complementation group 1 have nonfunctional ERCC1. We report that repair of UV-irradiated DNA can be reconstituted by combining rodent group 1 cell extracts with correcting protein from HeLa cells. Background repair was minimized by employing fractionated rodent cell extracts supplemented with human replication proteins RPA and PCNA. Group 1-correcting activity has a native molecular mass of 100 kDa and contains the 33 kDa ERCC1 polypeptide, as well as complementing activities for extracts from rodent group 4 and xeroderma pigmentosum group F (XP-F) cells. Extracts of group 1, group 4 or XP-F cells do not complement one another in vitro, although they complement extracts from other groups. The amount of ERCC1 detectable by immunoblotting is reduced in group 1, group 4 and XP-F extracts. Recombinant ERCC1 from Escherichia coli only weakly corrected the group 1 defect. The data suggest that ERCC1 is part of a functional protein complex with group 4 and XP-F correcting activities. The latter two may be equivalent to one another and analogous to S. cerevisiae RAD1.  相似文献   

14.
《FEBS letters》1987,212(1):145-148
SDS gel electrophoresis of microtubule proteins obtained from bovine brain by polymerization cycles revealed a new protein of 18 kDa. This protein was copolymerized with tubulin and its stoichiometry to tubulin remained constant for at least 5 cycles of assembly. Moreover, this protein remained bound to microtubules stabilized with 10 μM taxol and pelleted through a 4 M glycerol cushion. The same 18 kDa protein was found in a purified preparation of the high molecular mass microtubule-associated protein 1 (MAP-1). The 18 kDa protein copurified with the MAP-1 heavy chains during column chromatography on phosphocellulose, DEAE-cellulose, hydroxyapatite and Bio-Gel A-15m. Incubation of the MAP-1 preparation with a mouse monoclonal antibody to the light chain 1 (LC-1) of MAP-1 and with a second precipitating antibody (a rabbit antibody to mouse IgG) immunoprecipitated from the solution all the known components of MAP-1 (heavy chains, LC-1, LC-2), as well as the 18 kDa protein. Immunoblotting showed, however, that this antibody does not interact directly with the 18 kDa protein. These results indicate that the 18 kDa protein forms a complex with all other components of MAP-1. This polypeptide, therefore, is a new light chain (LC-3) of M AP-1.  相似文献   

15.
We have used an antibody to a previously identified 180 kDa (Hmp1) protein in Escherichia coli to clone the corresponding gene, which encodes a polypeptide of 114 kDa that has a mobility equivalent to 180 kDa in SDS/PAGE. We have demonstrated that the 180 kDa polypeptide is the primary gene product and not due to aggregation with other molecules. Moreover, our data indicate that the highly charged C-terminal region of the protein is responsible for its anomalous behaviour when analysed by SDS/PAGE. The hmp1 gene is in fact identical to ams (abnormal mRNA stability), also designated rne (RnaseE), and reported to have an ORF of 91 kDa. This discrepancy with the data in this paper can be ascribed to the omission of two bases in the previously reported sequence, generating an apparent stop codon. We previously demonstrated that the 180 kDa Hmp1/Ams protein cross reacted with both a polyclonal antibody and a monoclonal antibody raised against a yeast heavy chain myosin. However, we could detect no homology with myosin genes in the ams/hmp1 sequence. From the DNA sequence data, we identified a putative nucleotide binding site and a transmembrane domain in the N-terminal half of the molecule. In the C-terminal half, which appears to constitute a separate domain dominated by proline and charged amino acids, we also identified a region homologous to the highly conserved 70 kDa snRNP protein, involved in RNA splicing in eukaryotes. This feature would be consistent with reports that ams encodes RNaseE, an enzyme required for the processing of several stable RNAs in E. coli.  相似文献   

16.
We have isolated a 1,926-bp cDNA that encodes a novel polypeptide of 396 amino acid residues with a calculated molecular mass of 45.2 kDa. This MPPE1 polypeptide consists of a predicted signal sequence of 45 residues at the N-terminus, a 240-amino acid metallo-phosphoesterase domain, and a 24-amino acid transmembrane domain at the C-terminus. The genomic organization of the human MPPE1 gene proved to consist of 14 exons and to span about 27 kb. The gene was located on chromosome 18p11.2, adjacent to the G protein Golf alpha gene (GNAL), in tail-to-tail orientation, partially overlapping with the 3' UTR of the latter gene. MPPE1 is expressed as an mRNA of 2.2 kb in the brain, but not in any other tissues studied here. 3' RACE analysis defined a single functional polyadenylation site within the 3' UTR of the GNAL gene, while RT-PCR analysis revealed an alternatively spliced form of MPPE1, which included an additional exon located within the last intron. The alternatively spliced form encoded a truncated variant of MPPE1 with a calculated molecular mass of 38.8 kDa that lacks the C-terminal transmembrane domain.  相似文献   

17.
The synthesis of the major protein and lipid storage reserves during embryogenesis in oilseed rape (Brassica napus L., cv. Mikado) has been examined by biochemical, immunological and immunocytochemical techniques. The mature seeds contained about 45% (w/w) storage oil and 25% (w/w) protein. There were three major seed protein components, i.e. about 40-50% total protein was cruciferin, 20% was napin and 20% was a 18 kDa hydrophobic polypeptide associated with the proteinaceous membrane surrounding the storage oil bodies. Embryogenesis was divided into four overlapping stages with regard to the synthesis of these storage components: (1) for the first 3 weeks after flowering, little, if any, synthesis of storage components was observed; (2) storage-oil synthesis began at about week 3, and maximal rates were from weeks 4 to 7; (3) synthesis of the soluble storage proteins cruciferin and napin started at week 6 and rates were maximal between weeks 8 and 11; (4) the final stage was the synthesis of the 19 kDa oil-body polypeptide, which started at weeks 8-10 and was at a maximal rate between weeks 10 and 12. The synthesis of the 19 kDa oil-body protein therefore occurred independently of the synthesis of the soluble seed storage proteins. This former synthesis did not occur until shortly before the insertion of the 19 kDa polypeptide into the oil-body membrane. No evidence was found, either from sucrose-density-gradient-centrifugation experiments or from immunogold-labelling studies, for its prior accumulation in the endoplasmic reticulum. Conventional and immunogold-electron-microscopic studies showed that oil bodies were synthesized in the early to middle stages of seed development without a strongly electron-dense membrane. Such a membrane was only found at later stages of seed development, concomitantly with the synthesis of the 19 kDa protein. It is proposed that, in rapeseed embryos, oil bodies are initially formed with no proteinaceous membrane. Such a membrane is formed later in development after insertion by ribosomes of the hydrophobic 19 kDa polypeptide directly into the oil bodies.  相似文献   

18.
The activity of soluble lectins in leaves and roots of seedlings of winter wheat (Triticum aestivum L.) cultivar Mironovskaya 808 increased 1 day and 2 days, respectively, after infection with the mycoplasma Acholeplasma laidlawii 118. Analysis of acid-soluble proteins of wheat leaves by PAGE revealed the appearance of 22- and 20-kDa polypeptides, the disappearance of a 14-kDa polypeptide, and an increase in the content of polypeptides with molecular weights of 76, 48, 25, and 18 kDa. The 18-kDa polypeptide is a subunit of wheat germ agglutinin. A change in the activity of lectins may be a nonspecific response of plants to infection with the pathogen.  相似文献   

19.
20.
D York  V Ivanov  J Gan  M Filutowicz 《Gene》1992,116(1):7-12
The autogenously controlled pir gene of plasmid R6K was believed to encode a single polypeptide that plays multiple roles in the plasmid's biology. We have isolated an opal (op) mutant at the 18th codon of the pir coding frame which does not totally abolish translation of pir mRNA. In extracts of cells containing this mutation two translational products (35 kDa and 30.2 kDa) have been detected. We propose that the 35-kDa polypeptide produced by the pir18 op mutation contains Trp substituted for Arg18 as the result of an opal readthrough. Translation, which results in the 30.2-kDa polypeptide, originates downstream from the UGA stop signal created by the mutation. Moreover, we realize now that the 30.2-kDa polypeptide is also produced in cells containing a wild-type (wt) pir gene. The shorter variant of the pi protein lacks replication initiation and inhibition functions, as well as autorepressor activity in vivo. We also show that an in-frame fusion of seven N-terminal codons of the trpE gene with a pir gene lacking the first two codons produces two polypeptides which replace the 35-kDa pi protein and are of similar molecular weight. Thus, at least three options exist in the translation of the wt pir mRNA. Start codons are most likely at codon positions 1, 6 or 7, and 36 or 38. Each of these five AUG codons is preceded by a consensus ribosome-binding site (RBS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号