首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Saccharomyces cerevisiae gene HGT1/GSH11 encodes the high affinity glutathione transporter and is repressed by cysteine added to the culture medium. It has been found previously that a 5'-upstream cis-element, CCGCCACAC, is responsible for regulating GSH11 expression and that several proteins bind to this element (Miyake, T., Kanayama, M., Sammoto, H., and Ono, B. (2002) Mol. Genet. Genomics 266, 1004-1011). In this report we present evidence that the most prominent of these proteins is VDE, known previously as the homing endonuclease encoded by VMA1. We show also that GSH11 is not expressed in a VDE-deleted strain and that inability to express the GSH11 of this strain is overcome by introduction of the coding region of VDE or the entire VMA1 gene. It is also found that VDE does not cut DNA in the vicinity of the GSH11 cis-element. Rapamycin, an inhibitor of the target of rapamycin (TOR) signal-transduction system, is found to enhance expression of GSH11 in a VDE-dependent manner under conditions of sulfur starvation. These results indicate that GSH11 is regulated by a system sensitive to sulfur starvation (presumably via cysteine depletion) and a more general system involving the nutritional starvation signal mediated by the TOR system. Both systems need to be operational (inhibition of TOR and sulfur starvation) for full expression of GSH11.  相似文献   

2.
We have recently cloned an oligopeptide transport gene from Candida albicans denoted OPT1 . This gene showed significant sequence similarity to three open reading frames (ORFs) with no previously established function: isp4 from Schizosaccharomyces pombe and Saccharomyces cerevisiae YJL212C and YPR194C , identified during the genome project. The S . pombe gene isp4 was originally identified by Sato et al . as a gene that was upregulated through nitrogen starvation induction of meiosis. However, an isp4Δ strain exhibited a wild-type phenotype with respect to sexual differentiation. We have found that the same isp4Δ strain is deficient in tetrapeptide transport activity as measured by its resistance to toxic tetrapeptides, by its inability to accumulate a radiolabelled tetrapeptide and by the inability to use tetrapeptides as a sole source of an amino acid to satisfy an auxotrophic requirement. Similarly, we found that the ORF YPR194C from S . cerevisiae encodes an oligopeptide transporter. Sequence analyses as well as physiological evidence has led us to propose that the proteins encoded by isp4 and the genes identified from S . cerevisiae and C . albicans comprise a new group of transporters specific for small oligopeptides, which we have named the OPT family.  相似文献   

3.
The model eukaryote Saccharomyces cerevisiae has two distinct peptide transport mechanisms, one for di-/tripeptides (the PTR system) and another for tetra-/pentapeptides (the OPT system). The PTR system consists of three genes, PTR1, PTR2 and PTR3. The transporter (Ptr2p), encoded by the gene PTR2, is a 12 transmembrane domain (TMD) integral membrane protein that translocates di-/tripeptides. Homologues to Ptr2p have been identified in virtually all organisms examined to date and comprise the PTR family of transport proteins. In S. cerevisiae, the expression of PTR2 is highly regulated at the cellular level by complex interactions of many genes, including PTR1, PTR3, CUP9 and SSY1. Oligopeptides, consisting of four to five amino acids, are transported by the 12-14 TMD integral membrane protein Opt1p. Unlike Ptr2p, distribution of this protein appears limited to fungi and plants, and there appears to be three paralogues in S. cerevisiae. This transporter has an affinity for enkephalin, an endogenous mammalian pentapeptide, as well as for glutathione. Although it is known that OPT1 is normally expressed only during sporulation, to date little is known about the genes and proteins involved in the regulation of OPT1 expression.  相似文献   

4.
目的克隆、测序近平滑念珠菌ERG11基因的编码区序列并进行生物信息学分析。方法运用生物信息学的方法 ,通过与白念珠菌ERG11基因碱基序列同源性比对,在近平滑念珠菌基因组(www.sanger.ac.uk/sequencing/Candida/pa-rapsilosis/)中寻找可能的ERG11基因序列(CpERG11),并据此序列设计引物,经PCR扩增近平滑念珠菌标准株(ATCC22019)的ERG11基因片段,产物经电泳、纯化、克隆到质粒prG-AMAI-NotI中,转染DH10B大肠杆菌细胞,并酶切鉴定筛选阳性克隆测序分析。结果近平滑念珠菌ERG11编码区由1569个碱基组成,编码一段含522个氨基酸的多肽。近平滑念珠菌ERG11的编码区序列与白念珠菌、热带念珠菌、光滑念珠菌、酿酒酵母菌ERG11基因的同源性分别为74%、75%、65%、64%。该近平滑念珠菌ERG11的编码区为唑类药物作用靶酶基因。结论成功克隆、测序、并生物信息学分析近平滑念珠菌ERG11基因的编码区序列,为进一步的功能研究奠定基础。  相似文献   

5.
Candida albicans lacks the ability to survive within its mammalian host in the absence of endogenous glutathione biosynthesis. To examine the ability of this yeast to utilize exogenous glutathione, we exploited the organic sulfur auxotrophy of C. albicans met15Δ strains. We observed that glutathione is utilized efficiently by the alternative pathway of glutathione degradation (DUG pathway). The major oligopeptide transporters OPT1-OPT5 of C. albicans that were most similar to the known yeast glutathione transporters were not found to contribute to glutathione transport to any significant extent. A genomic library approach to identify the glutathione transporter of C. albicans yielded OPT7 as the primary glutathione transporter. Biochemical studies on OPT7 using radiolabeled GSH uptake revealed a K(m) of 205 μm, indicating that it was a high affinity glutathione transporter. OPT7 is unusual in several aspects. It is the most remote member to known yeast glutathione transporters, lacks the two highly conserved cysteines in the family that are known to be crucial in trafficking, and also has the ability to take up tripeptides. The transporter was regulated by sulfur sources in the medium. OPT7 orthologues were prevalent among many pathogenic yeasts and fungi and formed a distinct cluster quite remote from the Saccharomyces cerevisiae HGT1 glutathione transporter cluster. In vivo experiments using a systemic model of candidiasis failed to detect expression of OPT7 in vivo, and strains disrupted either in the degradation (dug3Δ) or transport (opt7Δ) of glutathione failed to show a defect in virulence.  相似文献   

6.
7.
The transport and regulation of maltose utilization by Torulaspora delbrueckii, one of the most abundant non-Saccharomyces species present in home-made corn and rye bread dough, has been investigated. A DNA fragment containing the MAL11 gene from T. delbrueckii (TdMAL11) was isolated by complementation cloning in Saccharomyces cerevisiae. DNA sequence analysis revealed the presence of an open reading frame (ORF) of 1884 bp, encoding a 627-amino acid membrane protein, which displays high homology to other yeast maltose transporters. Upstream of TdMAL11, the DNA insert contained a partial ORF (TdMAL12) on the opposite strand, which showed high similarity to the S. cerevisiae MAL12 gene. Sequence analysis, Northern blot and transport measurements indicated that TdMAL11 expression is regulated by the carbon source. Attempts to disrupt TdMAL11 revealed the presence of two functional MAL loci. Disruption of a single copy decreased the V(max) of maltose transport, but not the K(m), whereas the double disruption abolished the uptake of this sugar in T. delbrueckii.  相似文献   

8.
9.
10.
A J Cooper  E C Friedberg 《Gene》1992,114(1):145-148
Sequencing of the region upstream from the yeast RAD3 gene has revealed an open reading frame (ORF) of 225 amino acids (aa) that could encode a 25.3-kDa polypeptide. The predicted aa sequence of this ORF is homologous with that of several eukaryotic adenylate kinase (Adk)-encoding genes, including the yeast gene, ADK1. These findings suggest that the yeast Saccharomyces cerevisiae has a second Adk-encoding gene, tentatively designated as ADK2.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The Schizosaccharomyces pombe ORF, SPAC29B12.10c, a predicted member of the oligopeptide transporter (OPT) family, was identified as a gene encoding the S. pombe glutathione transporter ( Pgt1 ) by a genetic strategy that exploited the requirement of the cys1a Δ strain of S. pombe (which is defective in cysteine biosynthesis) for either cysteine or glutathione, for growth. Disruption of the ORF in the cys1a Δ strain led to an inability to grow on glutathione as a source of cysteine. Cloning and subsequent biochemical characterization of the ORF revealed that a high-affinity transporter for glutathione ( K m=63 μM) that was found to be localized to the plasma membrane. The transporter was specific for glutathione, as significant inhibition in glutathione uptake could be observed only by either reduced or oxidized glutathione, or glutathione conjugates, but not by dipeptides or tripeptides. Furthermore, although glu–cys–gly, an analogue of glutathione (γ-glu–cys–gly), could be utilized as a sulphur source, the growth was not Pgt1 dependent. This further underlined the specificity of this transporter for glutathione. The strong repression of pgt1+ expression by cysteine suggested a role in scavenging glutathione from the extracellular environment for the maintenance of sulphur homeostasis in this yeast.  相似文献   

20.
The assembly of the lipid-linked oligosaccharide, Glc(3)Man(9)GlcNAc(2)-P-P-Dol, occurs on the rough ER membrane in an ordered stepwise manner. The process is highly conserved among eukaryotes. In order to isolate the human mannosyltransferase I (MT-I) gene involved in the process, we used the Saccharomyces cerevisiae MT-I gene ( ALG1 ), which has already been cloned. On searching the EST database with the amino acid sequence of the ALG1 gene product, we detected seven related human EST clones. A human fetal brain cDNA library was screened by PCR using gene-specific primers based on the EST nucleotide sequences and a 430 bp cDNA fragment was amplified. The cDNA library was rescreened with this 430 bp cDNA, and two cDNA clones (HR1-3 and HR1-4) were isolated and sequenced. On a homology search of the EST database with the nucleotide sequence of HR1-3, we detected a novel human EST clone, AA675921 (GenBank accession number). Based on the nucleotide sequences of AA675921 and HR1-4, we designed gene-specific PCR primers, which allowed to amplify a 1.8 kb cDNA from human fetal brain cDNA. This cDNA was cloned and shown to contain an ORF encoding a protein of 464 amino acids. We designated this ORF as Hmat-1. The amino acid sequence deduced from the Hmat-1 gene showed several highly conserved regions shared with the yeast and nematode MT-I sequences. Furthermore, this 1.8 kb cDNA successfully complemented the S. cerevisiae alg1-1 mutation, indicating that the Hmat-1 gene encodes the human MT-I and that the function of this enzyme was conserved between yeast and human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号