首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To estimate isotopic changes caused by trematode parasites within a host, we investigated changes in the carbon and nitrogen isotope ratios of the freshwater snail Lymnaea stagnalis infected by trematode larvae. We measured carbon and nitrogen stable isotopes within the foot, gonad, and hepatopancreas of both infected and uninfected snails. There was no significant difference in the delta13C and delta15N values of foot and gonad between infected and uninfected snails; thus, trematode parasite infections may not cause changes in snail diets. However, in the hepatopancreas, delta15N values were significantly higher in infected than in uninfected snails. The 15N enrichment in the hepatopancreas of infected snails is caused by the higher 15N ratio in parasite tissues. Using an isotope-mixing model, we roughly estimated that the parasites in the hepatopancreas represented from 0.8 to 3.4% of the total snail biomass, including the shell.  相似文献   

2.
Ecological stoichiometry uses the mass balance of elements to predict energy and elemental fluxes across different levels of ecological organization. A specific prediction of ecological stoichiometry is the growth rate hypothesis (GRH), which states that organisms with faster growth or reproductive rates will require higher phosphorus content for nucleic acid and protein synthesis. Although parasites are found ubiquitously throughout ecosystems, little is understood about how they affect nutrient imbalances in ecosystems. We (1) tested the GRH by determining the carbon (C), nitrogen (N), and phosphorus (P) content of parasitic trematodes and their intermediate host, the freshwater snail Elimia livescens, and (2) used this framework to determine the trematode effects on host nutrient excretion and metabolism. Snail and parasite tissues were analyzed for elemental content using a CHN analyzer and soluble reactive phosphorus (SRP) methods. Ammonium and SRP assays were used to estimate N and P excretion rates. A respirometer was used to calculate individual snail metabolism. Trematode tissues contained lower C:P and N:P (more P per unit C and N) than the snail tissues. Snail gonadal tissues more closely resembled the elemental content of parasite tissues, although P content was 13% higher in the gonad than the trematode tissues. Despite differences in elemental content, N and P excretion rates of snails were not affected by the presence of parasites. Parasitized snails maintained faster metabolic rates than nonparasitized snails. However, the species of parasite did not affect metabolic rate. Together, this elemental imbalance between parasite and host, and the altered metabolic rate of infected snails may lead to broader parasite effects in stream ecosystems.  相似文献   

3.
Wang Q J  Li S X  Jing Ze C  Wang W Y 《农业工程》2008,28(3):885-894
We conducted this study in lightly and severely degraded Kobresia pygmaea meadow in Gande County, Qinghai Province of China. The purpose of this research was to compare carbon and nitrogen concentrations, content and dynamics of aboveground tissue, belowground roots and soil (0-40 cm) between lightly and severely degraded Kobresia meadow. The results showed that C and N concentrations and C:N ratio of the aboveground tissue were significantly higher in lightly degraded grassland than in severely degraded grassland. In addition, total carbon and nitrogen concentrations of the aboveground tissue were ranked in order of forbs > grasses > sedges in the same grassland type. Total carbon and nitrogen concentrations of belowground roots were significantly higher in severely degraded grassland than in lightly degraded grassland. Total carbon and nitrogen concentrations were higher in the aboveground tissue than in the belowground roots. Total soil organic carbon concentration in severely degraded grassland was significantly lower than that in lightly degraded grassland, and decreased with depth. C and N content per unit area was ranked in order of 0-40 cm soil depth > belowground roots > aboveground issue in the same grassland type. The total carbon content per unit area of aboveground tissue, roots and 0-40 cm soil depth declined by 7.60% after degradation from lightly (14669.2 g m−2) to severely degraded grassland (13554.3 g m−2), i.e., 0-40 cm soil depth declined by 4.10%, belowground roots declined by 59.97% and aboveground tissue declined by 15.39%. The nitrogen content per unit area of aboveground tissue, roots and 0-40 cm soil depth increased after degradation by 12.76% from lightly (3352.7 g m−2) to severely degraded grassland (3780.6 g m−2), i.e., 0-40 cm soil depth increased by 13.07%, belowground roots declined by 55.09% and aboveground tissue declined by 16.00%. As a result of grassland degradation, the total carbon lost by 11149 kg hm−2, and the total nitrogen increased by 4278 kg hm−2.  相似文献   

4.
The distribution of nitrogen (N) and carbon (C) pools in 100-year-old sessile oaks was investigated in situ at four key periods of tree phenology. Leaves, twigs, trunk and roots were sampled, and total non-structural nitrogen compounds (TNNC) and total non-structural carbohydrates (TNC) were quantified. TNC concentrations decreased more than 50 % between February and May, especially in the above-ground parts. During the same period, TNNC concentrations drastically decreased especially in twigs (more than 55 % below the winter baseline). This indicates high sink strength of new organs at bud break. TNC concentrations increased in summer in all tree compartments highlighting the TNC storage. TNNC deposition for storage constitution began in autumn during leaf senescence. The first organs acting as a N store were coarse roots followed by twigs; whereas all oak tree compartments were potential C store organs except phloem tissue. Arginine and asparagine were the two prevailing amino acids involved in both storage and transport. Besides identifying the compounds involved in the storage and transportation of N, our results highlight that oak seasonal cycles of C and N are not in phase: after intensive use of C and N stores in spring, the replenishment of N stores lags behind that of C stores.  相似文献   

5.
以青海省果洛州藏族自治州甘德县青珍乡高山嵩草Kobresia pygmaea草甸轻度退化草地和重度退化草地为研究对象,通过植物地上部分主要功能群(禾草类、杂类草、莎草类)、植物根系和土壤碳、氮浓度及储量动态研究,结果表明:高寒小嵩草草甸轻度退化草地地上部分主要功能群碳、氮浓度和C ∶ N比值明显高于重度退化草地的浓度.同一草地类型主要功能群比较,碳、氮浓度依次为杂类草>禾草类>莎草类;植物地上部分的碳、氮浓度明显高于地下根系的碳、氮浓度.重度退化草地植物根系碳、氮浓度高于轻度退化草地植物根系碳、氮浓度.重度退化草地土壤总有机碳浓度显著低于轻度退化草地土壤总有机碳浓度,随着土层的加深碳、氮浓度有减少的趋势.江河源区高山嵩草草甸的土壤有机碳、氮储量最大,植物根系碳、氮储量居中,植物地上部分碳、氮储量最小.重度退化草地总有机碳储量(13554.3 g/m2)较轻度退化草地储量(14669.2 g/m2)下降7.60%.其中,0~40cm土壤层碳储量下降4.10%,植物根系碳储量下降59.97%,植物地上部分碳储量下降15.39%;重度退化草地总氮储量(3780.6 g/m2)较轻度退化草地储量(3352.7 g/m2)高12.76%,其中,0~40cm土壤中总氮储量高13.07%,植物根系全氮储量下降55.09%,植物地上部分全氮下降16.00%.由于草地退化损失有机碳11149 kg/hm2,而全氮增加4278 kg/hm2.  相似文献   

6.
Nodulated Lupinus albus L. was grown on quartz sand in the greenhouseand supplied with a N-free culture solution. Half the plantswere infected with Cuscuta reflexa Roxb. at 33 DAS. An empiricallybased modelling technique was developed to quantitatively depictuptake, flow and utilization of C and N in the host plant andbetween host and parasite over a 12 d period. The modellingincorporated C: N ratios of solutes in phloem and pressure-inducedxylem sap, net increments of C and N and respiratory lossesof C. For assessing the transfer of solutes from host phloemto Cuscuta it was not possible to use the C: N ratio of phloemsap close to the site of parasite attachment, a procedure whichwould have assumed non-specific withdrawal of phloem-borne solutes,since this would have implied unimpeded mass flow from hostto parasite. The relative intake of C and N by the parasiteby specific withdrawal of nitrogenous and carbonaceous solutesfrom the phloem was obtained independently by assuming thatxylem intake occurred non-specifically. Xylem import was thusobtained (a) from transpiration and tissue water increment ofCuscuta and the concentrations of N and C in xylem sap and (b)from the Ca2+ increment of Cuscuta and the ratios Ca: N andCa: C in lupin xylem sap, assuming that Ca2+ intake occurredsolely via xylem. By subtracting net xylem import from totaluptake of C and N by Cuscuta the methods resulted in comparableratios of C: N intake from the phloem. The average ratio (53.4)was smaller than the C:N ratio in host phloem (85.6) indicatingspecific withdrawal of solutes with a distinct preference forN. Using this ratio, modelling of flows of C and N was possibleand showed that Cuscuta abstracted C and N mainly from the hostphloem, but xylem supply was nutrient-dependent and amountedto 6.4% of the N but only 0.5% of the C demand. The resultsindicated that Cuscuta exerted a very strong sink and competedefficiently with the root, the major sink of L. albus, by attracting81% of the current photosynthate and more N (223%) than wascurrently fixed. The massive demand of the parasite led to lossesparticularly of N from leaves and the root and apart from causingcarbon losses it appeared to induce a sink-dependent stimulationof photosynthesis. In contrast, nitrogen fixation in the Cuscuta-infectedlupin was inhibited to 37% of the control. Key words: Cuscuta reflexa, Lupinus albus, carbon, nitrogen, phloem, xylem, transport, parasites, modelling  相似文献   

7.
ABSTRACT: BACKGROUND: Microbial lipids are a potential source of bio- or renewable diesel and the red yeast Rhodosporidium toruloides is interesting not only because it can accumulate over 50% of its dry biomass as lipid, but also because it utilises both five and six carbon carbohydrates, which are present in plant biomass hydrolysates. METHODS: R. toruloides was grown in batch and fed-batch cultures in 0.5 l bioreactors at pH 4 in chemically defined, nitrogen restricted (C/N 40 to 100) media containing glucose, xylose, arabinose, or all three carbohydrates as carbon source. Lipid was extracted from the biomass using chloroform-methanol, measured gravimetrically and analysed by GC. RESULTS: R. toruloides was grown on glucose, xylose, arabinose or mixtures of these carbohydrates in batch and fed-batch, nitrogen restricted conditions. Lipid production was most efficient with glucose (up to 25 g lipid L1, 48 to 75% lipid in the biomass, at up to 0.21 g lipid L1h1) as the sole carbon source, but high lipid concentrations were also produced from xylose (36 to 45% lipid in biomass). Lipid production was low (15-19% lipid in biomass) with arabinose as sole carbon source and was lower than expected (30% lipid in biomass) when glucose, xylose and arabinose were provided simultaneously. The presence of arabinose and/or xylose in the medium increased the proportion of palmitic and linoleic acid and reduced the proportion of oleic acid in the fatty acids, compared to glucose-grown cells. High cell densities were obtained in both batch (37 g L1, with 49% lipid in the biomass) and fed-batch (35 to 47 g L1, with 50 to 75% lipid in the biomass) cultures. The highest proportion of lipid in the biomass was observed in cultures given nitrogen during the batch phase but none with the feed. However, carbohydrate consumption was incomplete when the feed did not contain nitrogen and the highest total lipid and best substrate consumption were observed in cultures which received a constant low nitrogen supply. CONCLUSIONS: Lipid production in R. toruloides was lower from arabinose and mixed carbohydrates than from glucose or xylose. Although high biomass and lipid production were achieved in both batch and fed-batch cultures with glucose as carbon source, for lipid production from mixtures of carbohydrates fed-batch cultivation was preferable. Constant feeding was better than intermittent feeding. The feeding strategy did not affect the relative proportion of different fatty acids in the lipid, but the presence of C5 sugars did.  相似文献   

8.
陈飞  刘方  白晓永  吴路华  陈祖拥  王金凤 《生态学报》2022,42(24):10201-10213
喀斯特地区特殊地质背景造就复杂破碎的地形发育出多样的微地貌,这使得清晰地认识土壤碳氮磷的空间异质性及生态化学计量特征存在困难。基于实地调查、土壤采样、实验测试的结果数据,引入混合效应模型评估方法结合变异系数,分别从全量(土壤有机碳、全氮、全磷)及有效态(活性有机碳、碱解氮及速效磷)两方面,揭示不同微地貌类型下土壤碳氮磷空间异质性及其生态化学计量特征。结果显示:(1)不同微地貌类型下土壤有机碳、全氮、全磷对碳氮磷比值的耦合解释度为:土面(91.09%)>石沟(91.02%)>石坑(84.63%)>石洞(80.17%)>石缝(73.20%),土面的空间异质性最低而石缝最高。(2)有效态方面,活性有机碳、碱解氮和速效磷对碳氮磷比值的耦合解释度特征为:石缝(84%)>石洞(58.15%)>土面(47.80%)>石坑(44.06%)>石沟(32.18%),说明石缝微地貌的土壤活性有机碳、碱解氮及速效磷空间异质性最低。(3)不同微地貌类型下土壤全量碳氮磷生态化学计量的变异系数差异均在50%以上(C/N 80%、C/P 53.57%、N/P 69.33...  相似文献   

9.
研究杨树人工林1~5级根序细根内碳、氮及非结构性碳水化合物含量的季节动态,对比了杨树细根碳氮分配格局的代际差异,以期建立细根生长和功能变化与连作人工林生产力衰退的联系.结果表明: 杨树细根非结构性碳水化合物(NSC)随根序显著增加,而氮含量显著减少.细根中全C和NSC含量与全N存在显著相关性.细根碳氮含量的变化在根序间的解释量占98.2%,而在代际间仅为1.7%.杨树不同根序细根均在生长季具有较高的碳含量和较低的氮含量,且碳、氮及NSC含量在代际间随季节差异显著,但C∶N差异不显著,根序与季节对细根碳氮含量存在显著交互效应.杨树低级细根C∶N约为20∶1,高级根则大于30∶1.细根C∶N在生长季(7和9月)显著低于其他季节,NSC含量在11月最高.连作人工林杨树细根的碳氮分配格局与细根根序具有较强的耦合性,NSC和C∶N在指示细根周转和调控细根季节性生长中具有重要生态学意义.  相似文献   

10.
苗期玉米叶片碳氮平衡与干旱诱导的叶片衰老之关系   总被引:1,自引:0,他引:1  
为了探究干旱诱导的碳氮平衡破坏与干旱诱导的叶片衰老之间的关系,该实验以8个在干旱胁迫下叶片衰老进程有明显差异的玉米品种为实验材料,采用PEG模拟干旱处理,通过测定光合速率、叶绿素含量和叶绿素荧光参数等叶片衰老指标以及非结构性碳水化合物(可溶性糖、淀粉)和全氮含量等变化,分析玉米中干旱诱导的叶片衰老与叶片中碳氮平衡(碳氮比)之间的关系。结果显示:(1)干旱胁迫下,8个玉米品种叶片净光合速率受到严重抑制,Fv/Fm大幅下降,叶绿素含量显著降低,说明干旱诱导了玉米叶片的衰老;(2)干旱诱导玉米叶片衰老的同时,8个玉米品种的叶片中可溶性糖含量显著升高,淀粉含量小幅上升,全氮含量大幅降低,碳氮比显著升高,碳氮平衡遭到了破坏;(3)8个玉米品种叶片的叶绿素含量与非结构性碳水化合物含量以及碳氮比呈极显著负相关关系,与全氮含量呈极显著正相关关系。因此,碳氮代谢与干旱诱导的叶片衰老紧密联系,碳氮平衡可能参与了干旱诱导的叶片衰老调控。  相似文献   

11.
Mysis mixta were reared under laboratory conditions (temperature: 9-10 degrees C; salinity: 7 per thousand, ad libitum food). Dry weight, ash, total carbon and nitrogen content of mysids (muscle tissue, eggs, and embryos of different developmental stages) have been analyzed. We found significant variations in ash content and elemental composition during growth and maturation for both sexes. The proportion of carbon in abdominal muscle decreased gradually from juveniles with body weight of 3-4 mg (42.9%) to males and gravid females ( approximately 40.0%). The nitrogen content was relatively constant (11.4% in average) with significant differences only between juveniles (11.3%) and mature females (11.6%). In embryos, carbon and nitrogen content were highest in early stages (58.6 and 14.3%, respectively). By the end of the marsupial development, carbon had decreased to 51.4% and nitrogen to 12.6%. The C:N ratio reflected the change in somatic carbon content, and the ratio decreased 6.2% from juveniles to gravid females, indicating lipids to be an energy source during maturation and reproduction. The weight-specific female investment in reproduction increases with body size. In gravid females, intersegmental growth during brooding period was observed, while males appear to store energy only for copulation and die after mating. Ontogenetic variation in body composition has implications for elemental budgets of M. mixta, its value as prey for fish and in modeling energy and nutrient cycling.  相似文献   

12.
Giant growth, depletion of energy stores, and inhibition of reproductive activity are striking effects of many trematode parasites on their intermediate snail hosts. Two hypotheses have been put forward to explain these phenomena: (1) host and parasite compete for energy rich and other essential nutrients, with the parasite as the winner, and (2) the parasite intervenes in the endocrine control of reproduction of the snail. These hypotheses were tested in the present study with the Trichobilharzia ocellata/Lymnaea stagnalis association. The snails were infected at a juvenile stage, and release of cercariae started on Day 55 after exposure. It was shown that enhanced growth of infected snails is not paralleled by a greater increase in dry weight, but hemolymph volume does increase, being 35% greater than in the noninfected controls. Control snails, on the other hand, showed an increase in the percentage body dry weight during sexual maturation. The conclusion is that infected snails retain an essentially juvenile body structure. In control snails, glycogen was depleted from the mantle store at the start of egg laying but the onset of cercariae production marked a severe glycogen depletion from the headfoot and the mantle in infected snails, being nearly complete on Day 68 after exposure. The hemolymph glucose concentration was only slightly lower in infected than in control snails and it did not change (in both groups) during glycogen mobilization. This suggests that glycogen mobilization does not result from the snail and the parasite competing directly for metabolites within the hemolymph. Infection inhibited the maturation of the accessory sex organs: there was no increase in the relative wet weights nor in the amounts of DNA and secretion products in the albumin and prostate glands. Infected snails did not lay eggs. It is presumed that the parasite produces one or more agents which intervene in the action of the gonadotrophic hormones. The release of these agents commences at an early stage of infection.  相似文献   

13.
The in vitro culture of the Eastern oyster parasite Perkinsus marinus has provided a unique opportunity to examine its susceptibility to putative recognition and effector defense mechanisms operative in refractory bivalve species. In this study, we report the effect of supplementing the culture medium with plasma from: (1) uninfected to heavily infected Eastern oysters; (2) oyster species considered to be disease-resistant; and (3) bivalve mollusk species that are naturally exposed to the parasite but show no signs of disease. We also examined in vitro the interaction between hemocytes from Crassostrea virginica and C. gigas and P. marinus trophozoites. Our results revealed a significant decrease (32%) in proliferation of P. marinus in the presence of plasma from heavily infected C. virginica oysters. The inhibitory effects were less pronounced with plasma from moderately infected and uninfected oysters. In contrast, plasma from C. rivularis and C. gigas enhanced P. marinus proliferation. Proliferation was significantly reduced in media supplemented with plasma from Mytilus edulis, Mercenaria mercenaria, and Anadara ovalis. The highest inhibitory activity was apparent in M. edulis, for which 5% plasma-supplemented medium reduced growth by 35% relative to the controls. M. edulis active component(s) was heat-stable, yet pronase-sensitive. The significantly higher uptake of live P. marinus trophozoites by hemocytes from C. virginica, relative to those from C. gigas, suggests a certain level of specificity in the recognition/endocytosis of the parasite by its natural bivalve host species.  相似文献   

14.
氮输入对湿地生态系统碳氮循环具有重要影响,研究湿地土壤微生物功能多样性及碳氮组分对氮输入的响应,对于明确湿地土壤碳氮循环微生物驱动机制具有重要意义。依托长期野外氮输入模拟试验,利用Biolog-ECO微平板技术,分析不同浓度氮输入:N1(6 g N m-2 a-1)、N2(12 g N m-2 a-1)和N3(24 g N m-2 a-1)对湿地土壤表层(0-15 cm)和亚表层(15-30 cm)微生物碳源代谢活性、功能多样性和碳氮组分的影响。结果表明:N2处理显著提高了亚表层土壤微生物碳源代谢活性和McIntosh指数,N3处理显著降低了表层土壤微生物Shannon指数和Shannon-evenness指数。随氮输入浓度增加湿地表层土壤微生物对糖类的利用率显著降低,N3处理表层土壤微生物对胺类的利用率以及亚表层土壤微生物对醇类的利用率显著提高。N1处理显著提高了湿地表层土壤全氮和微生物量碳含量;N2、N3处理显著提高了土壤铵态氮、硝态氮含量;N3处理显著降低了土壤pH值。湿地土壤pH、总碳、溶解性有机碳含量是影响微生物碳源代谢活性和功能多样性的重要因素,土壤溶解性有机碳、铵态氮、全氮含量、含水率是影响微生物碳源利用变化的主要因子。  相似文献   

15.
Orobanche species are holoparasites which are very efficient sinks for host-derived solutes. Here, we report the use of direct measurements of xylem sap solute concentrations and water fluxes, together with a modelling procedure to calculate element fluxes within an association between Orobanche cernua and its tobacco host. Infection of tobacco by the parasite markedly influenced carbon acquisition and partitioning; net fixation of carbon was 20% higher in infected tobacco compared with controls. Orobanche cernua caused a 84% increase in net carbon flux moving downward from the tobacco shoot and 73% of this carbon was intercepted by the parasite, almost entirely through the phloem (>99%). Further, the parasite also exerted a large impact on the nitrogen relations of the plant, notably nitrate uptake was stimulated and the amino acid content of xylem sap was lower. The parasite also relied heavily on host phloem for the supply of other resources, with only 5 to 15% of N, and 16% of K, 23% of Na, 63% of Mg and 13% of S being derived from the xylem. Thus, we provide quantitative information on the phloem dependency of the parasite and show that host carbon and nitrogen metabolism is stimulated as a consequence of infection.  相似文献   

16.
Determination of different carbohydrate and nitrogen fractions was made in tomato (Lycopersicum esculentum Mill.) and mustard (Brassica campestris L.) serving as hosts for Orobanche cernua and O. aegyptiaca respectively. Shoots of Orobanche were also subjected to such analyses. Infection raised the level of total reducing and total sugar in the host with a simultaneous decrease in the level of acid-hydrolyzable and total carbohydrates in the constituent organs of infected hosts. This has been explained to be due to predominance of hydrolytic activity in the infected host. Infection also brought about a depression in the proportion of sucrose to the pool of total sugar in the host. This was also possibly due to predominance of hydrolytic processes and retardation in the synthetic processes. Higher concentration of acid-hydrolyzable and total carbohydrates in Orobanche than in the host indicated a high demand for sugars by the parasite. The insignificant differences between the relative proportions of different nitrogen fractions to the pool of total nitrogen in healthy and infected hosts indicated that nitrogen metabolism was not deranged in any way due to infection. Orobanche always had a lower concentration of total soluble and total nitrogen than the host root.  相似文献   

17.
The basal behaviour and relationship with organic carbon (Corg) content and prevailing granulometric fractions, of organic nitrogen (Norg), total phosphorus (P-total) and C/N ratio in surface sediments of Chacopata lagoon, Sucre State, Venezuela, were studied. Concentrations and spatial gradients were determined in sixteen stations following a common method for marine sediments. Norg concentrations varied between 0.102 and 0.510% (x = 0.237%), total phosphorus between 0.012 and 0.094% (x = 0.058%) and C/N ratio between 9.27 and 44.47 (x = 20.53). The higher contents of Norg and total phosphorus are from sections with an abundance of mangroves, marine phanerogams, macroalgae, benthonic biomass and migratory birds shelters. The C/N ratio shows the typical values for carbonated sediments, indicating that the nitrogenous compounds are rapidly degraded and the organic matter presents itself as humic substances. This parameter was moderately associated with silt and clay, and showed antagonism with sand, whereas Norg and phosphorus showed no correlation with them. The organic contribution is purely autochthonous: no anthropogenous contributions were found.  相似文献   

18.
Understanding responses of parasites to changes in nutrient regimes is necessary for prediction of their role in aquatic ecosystems under global change in nutrient loading. We studied the response of the natural parasite fauna of Daphnia longispina to nutrient enrichment in mesocosms in a small humic lake. We measured the concentrations of inorganic phosphorus and nitrogen in the water, total nutrients in the seston, algal and bacterial biomass, Daphnia population dynamics, Daphnia stoichiometry, Daphnia stable isotope values and the presence and abundance of parasites in treated mesocosms as compared to three control ones. Incorporation of the nutrient enrichment in the food web was seen as increased nutrient concentrations in the epilimnion and as a decrease in carbon:nutrient ratios and δ15N values in Daphnia. Nutrient enrichment did not significantly influence algal, bacterial or Daphnia biomass. One of the four parasite species observed, unidentified small gut parasite, had a higher prevalence (percentage of Daphnia infected) in treated mesocosms, but its intensity (number of parasites per infected host) remained the same among treatments. Our results suggest that the effect of nutrient enrichment on host–parasite dynamics is dependent on complex interactions within food webs and on the epidemiological traits of parasites.  相似文献   

19.
鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征   总被引:15,自引:20,他引:15  
聂兰琴  吴琴  尧波  付姗  胡启武 《生态学报》2016,36(7):1898-1906
2013年11月初在鄱阳湖南矶湿地国家级自然保护区,采集芦苇(Phragmites australis)、南荻(Triarrhena lutarioriparia)、菰(Zizania latifolia(Griseb.))、灰化苔草(Carex cinerascens)、红穗苔草(Carex argyi)和水蓼(Polygonum hydropiper)等6种优势植物新鲜叶片、凋落物及表层0—15cm土壤样品测定了碳(C)、氮(N)、磷(P)含量,以阐明不同物种、不同生活型间C、N、P化学计量差异,探讨化学计量垂直分异。结果表明:1)C、N、P含量变化范围分别为:叶片380.6—432.2 mg/g,15.3—32.6 mg/g和1.3—2.0 mg/g;凋落物345.4—416.1 mg/g,10.8—20.8 mg/g和1.1—1.7 mg/g;土壤15.0—38.1 mg/g,1.2—3.1 mg/g和0.7—1.1mg/g,不同物种间叶片、凋落物及土壤C、N、P含量差异显著,且叶片C、N、P含量显著高于凋落物与土壤。2)土壤C∶N、C∶P及N∶P值显著低于叶片与凋落物,且土壤C、N、P化学计量关系与凋落物更为密切,凋落物的C∶N、N∶P分别能解释土壤C∶N、N∶P变异的35%、18%。3)挺水植物与湿生植物之间叶片C∶N、N∶P值差异显著,C∶P则差异不显著,凋落物C∶N、C∶P与N∶P均未达到显著性差异。  相似文献   

20.
Seasonal variations in tissue nitrogen, carbon, amino acids and ammonium were determined for the brown algae Macrocystis integrifolia Bory and Nereocystis luetkeana (Mertens) Pastels and Ruprecht, For M. integrifolia, the proportions of tissue nitrogen and carbon in blades, bulbs and stipes were also determined. The composition of the two algae in terms of the above constituents was similar. In addition, ammonium, nitrogen and protein-bound amino acids showed distinct seasonal trends with high values during the winter and low levels during the summer. The range for nitrogen was 0.8–3.0% and for proteins 7.6–11.7% of dry weight. In contrast, carbon content and C/N ratio showed the reverse trend with higher values during the summer and lower values during the winter. The range for carbon was 19–31% of dry weight, and the C/N ratio showed a range of 9–37. The free amino acids did not show any specific seasonably. Tissue nitrogen and carbon showed higher values in the blades than in the bulbs and stipes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号