首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
2.
Post-translational modifications of p21rho proteins.   总被引:6,自引:0,他引:6  
Post-translational modifications of the ras proteins, which are required for plasma membrane localization and biological function of the proteins, have been shown to include prenylation and carboxymethylation at the carboxyl terminal cysteine residue of the cysteine-aliphatic amino acid-aliphatic amino acid-any amino acid (CAAX) box. In addition, p21Ha-ras and p21N-ras, but not p21K-ras (B), are palmitoylated. The three mammalian rho proteins (A, B, and C) are also members of the ras superfamily but have distinct biological activities and different intracellular distributions from p21ras. Analysis showed all three rho proteins are modified by a COOH-terminal carboxymethylation similar to p21ras, whereas p21rhoC labeled with [3H]mevalonic acid in vivo revealed the presence of a C20 prenoid, similar to that already described for p21rhoA. However, in vivo and in vitro studies of p21rhoB showed this protein to be modified by both C15 and C20 prenoids. Mutation of C193 in the CAAX box abolished prenylation, whereas mutation of the adjacent C192 resulted in a significant reduction in the amount of the C20, but not C15 prenoid, recovered from p21rhoB. In vivo labeling studies with [3H]palmitic acid and mutational analysis showed that both cysteine residues at 189 and 192 upstream of the CAAX box in p21rhoB are sites for palmitoylation. We conclude that there are different populations of post-translationally modified p21rhoB in the cell and that the sequence specificity for geranylgeranyl- and farnesyltransferases may be more complicated than previously proposed.  相似文献   

3.
Two approaches were taken to address the possible role of gamma-subunit prenylation in dictating the cellular distribution of guanine nucleotide-binding regulatory proteins. Prenylation of gamma subunits was prevented by site-directed mutagenesis or by inhibiting the synthesis of mevalonate, the precursor of cellular isoprenoids. When beta or gamma subunits were transiently expressed in COS-M6 simian kidney cells (COS) cells, the proteins were found in the membrane fraction by immunoblotting. Immunofluorescence experiments indicated that the proteins were distributed to intracellular structures in addition to plasma membranes. Replacement of Cys68 of gamma with Ser prevented prenylation of the mutant protein and association of the protein with the membrane fraction of COS cells. Immunoblotting results demonstrated that some of the beta subunits were found in the cytoplasm when coexpressed with the nonprenylated mutant gamma subunit. When Neuro 2A cells were treated with compactin to inhibit protein prenylation, a fraction of endogenous beta and gamma was distributed in the cytoplasm. It is concluded that prenylation facilitates association of gamma subunits with membranes, that the cellular location of gamma influences the distribution of beta, and that prenylation is not an absolute requirement for interaction of beta and gamma.  相似文献   

4.
Screening for genes homologous to ras in Schizosaccharomyces pombe resulted in the isolation of a homolog of Saccharomyces cerevisiae YPT1. This S. pombe gene, named ypt3, has a coding capacity of 214 amino acids interrupted by two introns, and is essential for cell growth. Two more YPT1 homologs were isolated from S. pombe using a part of the ypt3 gene as the probe. One of them, named ypt1, is highly homologous to S. cerevisiae YPT1 and mouse ypt1 and is essential for cell growth. This gene has four introns and encodes 203 amino acids. Its cDNA placed downstream of the S. cerevisiae GAL7 promoter could complement S. cerevisiae ypt1-, indicating that Sp ypt1 and Sc YPT1 are functionally homologous. The other isolate, named ryh1, and a fourth homolog, ypt2, have been characterized by Gallwitz and co-workers. The ypt1, ypt2 and ypt3 genes, but not ryh1, constitute a family, their products having double cysteine as their C terminus and serine in place of a glycine residue highly conserved in ras proteins (mammalian Gly-12 or S. pombe Gly-17). The physiological roles of these genes appear to be distinct because each of them is indispensable for cell growth.  相似文献   

5.
p21ras and several other ras-related GTP-binding proteins are modified post-translationally by addition of 15-carbon farnesyl or 20-carbon geranylgeranyl isoprenoids to cysteines within a conserved carboxyl-terminal sequence motif, Caa(M/S/L), where a is an aliphatic amino acid. Proteins ending with M or S are substrates for farnesyltransferase, whereas those ending with L are modified preferentially by geranylgeranyltransferase. We recently reported that GTP-binding proteins encoded by rab1B (GGCC), rab2 (GGCC), and rab5 (CCSN) are modified by 20-carbon isoprenyl derivatives of [3H]mevalonate when translated in vitro, despite having carboxyl-terminal sequences distinct from the Caa(M/S/L) motif. We now show that these proteins function as specific acceptors for geranylgeranyl in vitro and are modified by 20-carbon isoprenyl groups in COS cells metabolically labeled with [3H]mevalonate. Proteins encoded by rab4 and rab6, with yet another distinct carboxyl-terminal motif (xCxC), are similarly modified by 20-carbon isoprenoids in vitro and in vivo. The geranylgeranyl modification of rab5 protein (CCSN) is catalyzed by an enzyme in brain cytosol but not by a purified geranylgeranyltransferase that modifies GTP-binding proteins with the CaaL motif. Unlike the prenylation of proteins with Caa(M/S/L) termini, the prenylation of rab5 protein is not inhibited by a synthetic peptide based on its carboxyl-terminal sequence (TRNQCCSN). When cellular isoprenoid synthesis is blocked by treatment of cells with lovastatin, rab proteins that are normally localized in membranes of the endoplasmic reticulum, Golgi apparatus, and endosomes accumulate in the cytosol. This change in rab protein localization is reversed by providing cells with mevalonate. These findings suggest that geranylgeranyl modification underlies the ability of rab GTP-binding proteins to associate with intracellular membranes, where they are postulated to function as mediators of vesicular traffic.  相似文献   

6.
7.
Using the cloned Saccharomyces cerevisiae YPT1 gene as hybridization probe, a gene, designated ypt2, was isolated from the fission yeast Schizosaccharomyces pombe and found to encode a 200 amino acid long protein most closely related to the ypt branch of the ras superfamily. Disruption of the ypt2 gene is lethal. The bacterially produced ypt2 gene product is shown to bind GTP. A region of the ypt2 protein corresponding to but different from the 'effector region' of ras proteins is also different from that of ypt1 proteins of different species but identical to the 'effector loop' of the S.cerevisiae SEC4 gene product, a protein known to be required for vesicular protein transport. The S.pombe ypt2 gene under control of the S.cerevisiae GAL10 promoter is able to suppress the temperature-sensitive phenotype of a S. cerevisiae sec4 mutant, indicating a functional similarity of these GTP-binding proteins from the two very distantly related yeasts.  相似文献   

8.
Several proteins in mammalian cells are modified post-translationally by the isoprenoid, farnesol. Incubation of cultured cells with [3H]mevalonate, an isoprenoid precursor, results in the labeling of multiple polypeptides, the most prominent of which migrate in the range of 21-26 kDa on sodium dodecyl sulfate-polyacrylamide gels. In Rat-6 fibroblasts transformed by H-ras, one of the farnesylated proteins was identified as p21ras by two-dimensional immunoblotting. However, this protein accounted for only a small proportion of the [3H]mevalonate-derived radioactivity incorporated into 21-26-kDa proteins. Murine erythroleukemia cells, which did not express immunodetectable quantities of p21ras, contained several 21-26-kDa farnesylated proteins distributed in both the cytosolic and particulate fractions. At least eight of these proteins were capable of binding [alpha-32P]GTP on nitrocellulose membranes. Pulse-chase studies showed that the isoprenoid modification did not necessarily result in the translocation of the cytosolic proteins to the cell membrane. A prominent group of carboxyl-methylated proteins in murine erythroleukemia cells overlapped with the 21-26-kDa farnesylated proteins on one-dimensional sodium dodecyl sulfate gels. Methylation of this group of proteins was selectively abolished when cells were treated with lovastatin, an inhibitor of isoprenoid synthesis. Addition of exogenous mevalonate to the lovastatin-treated cells fully restored carboxyl methylation. These studies suggest that the 21-26-kDa farnesylated proteins in mammalian cells are members of a recently discovered family of low molecular mass GTP-binding proteins which, although ras-related, appear to be distinct structurally and possibly functionally from the products of the ras genes. The observed isoprenoid-dependent carboxyl methylation of a group of 21-26-kDa proteins suggests that the low molecular mass GTP-binding proteins may undergo a series of post-translational C-terminal cysteine modifications (i.e. farnesylation, carboxyl methylation) analogous to those recently elucidated for p21ras.  相似文献   

9.
Insulin was found to stimulate the phosphorylation of the 21,000-dalton protein encoded by the ras oncogene of Harvey murine sarcoma virus in membrane fraction both in vivo and in vitro. When the human ras proteins expressed in E. coli were reconstituted with purified human insulin receptor, GTPase activity of normal or its mutated oncogenic ras protein was not stimulated by the addition of insulin. Likewise, tyrosine kinase activity or insulin binding capacity of the receptor was not influenced when assayed in the presence of the ras proteins. These results suggest that ras proteins may be coupled with the insulin receptor system through some unidentified membrane factors.  相似文献   

10.
Deletions of small sequences from the viral Harvey ras gene have been generated, and resulting ras p21 mutants have been expressed in Escherichia coli. Purification of each deleted protein allowed the in vitro characterization of GTP-binding, GTPase and autokinase activity of the proteins. Microinjection of the highly purified proteins into quiescent NIH/3T3 cells, as well as transfection experiments utilizing a long terminal repeat (LTR)-containing vector, were utilized to analyze the biological activity of the deleted proteins. Two small regions located at 6-23 and 152-165 residues are shown to be absolutely required for in vitro and in vivo activities of the ras product. By contrast, the variable region comprising amino acids 165-184 was shown not to be necessary for either in vitro or in vivo activities. Thus, we demonstrate that: (i) amino acid sequences at positions 5-23 and 152-165 of ras p21 protein are probably directly involved in the GTP-binding activity; (ii) GTP-binding is required for the transforming activity of ras p21 and by extension for the normal function of the proto-oncogene product; and (iii) the variable region at the C-terminal end of the ras p21 molecule from amino acids 165 to 184 is not required for transformation.  相似文献   

11.
The Saccharomyces cerevisiae gene YPT1 encodes a protein that exhibits significant homology to the mammalian ras proteins. Using gene disruption techniques, we have shown that the intact YPT1 gene is required for spore viability. Lethality caused by loss of YPT1 function, unlike that caused by loss of the yeast ras homologs RAS1 and RAS2 function, is not suppressed by the bcy1 mutation, suggesting that YPT1 does not act through the adenylate cyclase regulatory system. A cold-sensitive allele, ypt1-1, was constructed. At the nonpermissive temperature, mutants died, exhibiting aberrant nuclear morphology, as well as abnormal distribution of actin and tubulin. The mutant cells died without exhibiting classical cell-cycle-specific arrest; nevertheless, examination of cellular DNA content suggests that the YPT1 function is required, particularly after S phase. Cells carrying the ypt1-1 mutation died upon nitrogen starvation even at a temperature permissive for growth; diploid cells homozygous for ypt1-1 did not sporulate. The YPT1 gene is thus involved in nutritional regulation of the cell cycle as well as in normal progression through the mitotic cell cycle.  相似文献   

12.
We synthesized a set of 20-mer oligonucleotides corresponding to a sequence of seven amino acids strictly conserved in all the different ras proteins, from yeast to man, as well as in rho and YPT, two proteins distantly related to p21 ras (approximately 30% amino acid homology). This oligonucleotide probe was used to search for new members of the ras family. We describe here a new ras related gene named ral, isolated from a cDNA library of immortalized simian B-lymphocytes. The ral gene codes for a 206 amino acid protein of expected mol. wt 23.5 kd that shares greater than 50% homology with H-ras, K-ras or N-ras. The GTP binding regions of p21 ras and a C-terminal cysteine involved in membrane anchoring are also present in ral; this strongly suggests that ral is a GTP binding protein with membrane localization. Furthermore, several external regions of p21 ras presumably involved in the interaction with effector, receptor and/or regulatory proteins are highly homologous to the corresponding regions in ral. Therefore some of the proteins that interact with ral might be identical or closely related to those interacting with p21 ras.  相似文献   

13.
All ras proteins are polyisoprenylated but only some are palmitoylated   总被引:174,自引:0,他引:174  
J F Hancock  A I Magee  J E Childs  C J Marshall 《Cell》1989,57(7):1167-1177
The C-terminal CAAX motif of the yeast mating factors is modified by proteolysis to remove the three terminal amino acids (-AAX) leaving a C-terminal cysteine residue that is polyisoprenylated and carboxyl-methylated. Here we show that all ras proteins are polyisoprenylated on their C-terminal cysteine (Cys186). Mutational analysis shows palmitoylation does not take place on Cys186 as previously thought but on cysteine residues contained in the hypervariable domain of some ras proteins. The major expressed form of c-K-ras (exon 4B) does not have a cysteine residue immediately upstream of Cys186 and is not palmitoylated. Polyisoprenylated but nonpalmitoylated H-ras proteins are biologically active and associate weakly with cell membranes. Palmitoylation increases the avidity of this binding and enhances their transforming activity. Polyisoprenylation is essential for biological activity as inhibiting the biosynthesis of polyisoprenoids abolishes membrane association of p21ras.  相似文献   

14.
Post-translational modification by isoprenylation is a pivotal process for the correct functioning of many signalling proteins. The Drosophila melanogaster cGMP-PDE (cGMP-specific phosphodiesterase) DmPDE5/6 possesses a CaaX-box prenylation signal motif, as do several novel cGMP-PDEs from insect and echinoid species (in CaaX, C is cysteine, a is an aliphatic amino acid and X is 'any' amino acid). DmPDE5/6 is prenylated in vivo at Cys(1128) and is localized to the plasma membrane when expressed in Drosophila S2 cells. Site-directed mutagenesis of the prenylated cysteine residue (C1128S-DmPDE5/6), pharmacological inhibition of prenylation or co-expression of DmPrBP (Drosophila prenyl-binding protein)/delta each alters the subcellular localization of DmPDE5/6. Thus prenylation constitutes a critical post-translational modification of DmPDE5/6 for membrane targeting. Co-immunoprecipitation and subcellular-fractionation experiments have shown that DmPDE5/6 interacts with DmPrBP/delta in Drosophila S2 cells. Transgenic lines allow targeted expression of tagged prenylation-deficient C1128S-DmPDE5/6 in Type I (principal) cells in Drosophila Malpighian tubules, an in vivo model for DmPDE5/6 function. In contrast with wild-type DmPDE5/6, which was exclusively associated with the apical membrane, the C1128S-DmPDE5/6 mutant form was located primarily in the cytosol, although some residual association occurred at the apical membrane. Despite the profound change in intracellular localization of C1128S-DmPDE5/6, active transport of cGMP is affected in the same way as it is by DmPDE5/6. This suggests that, in addition to prenylation and interaction with DmPrBP/delta, further functional membrane-targeting signals exist within DmPDE5/6.  相似文献   

15.
Tumor cell lines derived from malignant schwannomas removed from patients with neurofibromatosis type 1 (NF1) have been examined for the level of expression of NF1 protein. All three NF1 lines examined expressed lower levels of NF1 protein than control cells, and the level in one line was barely detectable. The tumor lines expressed normal levels of p120GAP and p21ras. Although the p21ras proteins isolated from the tumor cells had normal (nonmutant) biochemical properties in vitro, they displayed elevated levels of bound GTP in vivo. The level of total cellular GAP-like activity was reduced in extracts from the tumor line that expresses very little NF1 protein. Introduction of the catalytic region of GAP into this line resulted in morphological reversion and lower in vivo GTP binding by endogenous p21ras. These data implicate NF1 protein as a tumor suppressor gene product that negatively regulates p21ras and define a "positive" growth role for ras activity in NF1 malignancies.  相似文献   

16.
Post-translational modification by protein prenylation is required for membrane targeting and biological function of monomeric GTPases. Ras and Rho proteins possess a C-terminal CAAX motif (C is cysteine, A is usually an aliphatic residue, and X is any amino acid), in which the cysteine is prenylated, followed by proteolytic cleavage of the AAX peptide and carboxyl methylation by the Rce1 CAAX protease and Icmt methyltransferase, respectively. Rab GTPases usually undergo double geranylgeranylation within CC or CXC motifs. However, very little is known about processing and membrane targeting of Rabs that naturally contain a CAAX motif. We show here that a variety of Rab-CAAX proteins undergo carboxyl methylation, both in vitro and in vivo, with one exception. Rab38(CAKS) is not methylated in vivo, presumably because of the inhibitory action of the lysine residue within the AAX motif for cleavage by Rce1. Unlike farnesylated Ras proteins, we observed no targeting defects of overexpressed Rab-CAAX proteins in cells deficient in Rce1 or Icmt, as reported for geranylgeranylated Rho proteins. However, endogenous geranylgeranylated non-methylated Rab-CAAX and Rab-CXC proteins were significantly redistributed to the cytosol at steady-state levels and redistribution correlates with higher affinity of RabGDI for non-methylated Rabs in Icmt-deficient cells. Our data suggest a role for methylation in Rab function by regulating the cycle of Rab membrane recruitment and retrieval. Our findings also imply that those Rabs that undergo post-prenylation processing follow an indirect targeting pathway requiring initial endoplasmic reticulum membrane association prior to specific organelle targeting.  相似文献   

17.
The carboxyl methylation of secretory proteins in vivo was investigated in bovine adrenal medullary cells in culture. Chromogranin A, the major intragranular secretory protein in adrenal medullary cells, and other secretory proteins were found to be carboxyl-methylated within secretory vesicles. The in vivo labeling pattern using [methyl-3H]methionine and the in vitro labeling pattern using S-adenosyl-[methyl-14C]methionine of intravesicular secretory proteins were similar. The detection of methylated chromogranin A in mature secretory vesicles required 3-6 h, a time consistent with the synthesis and storage of secretory proteins in this tissue. Carboxyl-methylated chromogranin A was secreted from medullary cells by exocytosis via activation of nicotinic cholinergic receptor and recovered still under the methylated form in the incubation medium. Since protein-carboxyl-methylase is cytosolic, these results suggest that methylation of secretory proteins is a cotranslational phenomenon.  相似文献   

18.
Proteins require proper conformational energetics to fold and to function correctly. Despite the importance of having information on conformational energetics, the investigation of thermodynamic stability has been limited to proteins, which can be easily expressed and purified. Many biologically important proteins are not suitable for conventional biophysical investigation because of the difficulty of expression and purification. As an effort to overcome this limitation, we have developed a method to determine the thermodynamic stability of low abundant proteins in cell lysates. Previously, it was demonstrated that protein stability can be determined quantitatively by measuring the fraction of folded proteins with a pulse of proteolysis (Pulse proteolysis). Here, we show that thermodynamic stability of low abundant proteins can be determined reliably in cell lysates by combining pulse proteolysis with quantitative Western blotting (Pulse and Western). To demonstrate the reliability of this method, we determined the thermodynamic stability of recombinant human H‐ras added to lysates of E. coli and human Jurkat T cells. Comparison with the thermodynamic stability determined with pure H‐ras revealed that Pulse and Western is a reliable way to monitor protein stability in cell lysates and the stability of H‐ras is not affected by other proteins present in cell lysates. This method allows the investigation of conformational energetics of proteins in cell lysates without cloning, purification, or labeling.  相似文献   

19.
Posttranslational prenylation of proteins synthesized as soluble precursors enhances their hydrophobicity and enables them to bind biological membranes. These modifications consist in the attachment of a C15 farnesyl or a C20 geranylgeranyl moiety to the cysteine residue(s) of proteins bearing CAAX, CC or CXC C-terminal sequences (where C = cysteine, A = aliphatic residue and X = any amino-acid), such as proteins of the ras superfamily, gamma subunits of heterotrimetric G proteins, lamin B as well as yeast mating factor a. A farnesyl transferase (FTase) and two distinct geranylgeranyl transferases (GGTases I and II) have been recently identified. FTase and GGTase I modify proteins containing a C-terminal CAAX motif; such a sequence is necessary and sufficient for recognition by the enzymes. The nature of the fourth residue determines the nature of the modification: when X is a serine, a methionine or a phenylalanine, the protein is farnesylated, whereas the presence of a leucine residue results in the attachment of a geranylgeranyl group. Both these enzymes are alpha beta heterodimers; their purification, molecular cloning of their coding sequences as well as mutational studies in yeast have shown that they share a common alpha subunit, and that their beta subunits exhibit a significant level of sequence similarity. GGTase II modifies ras-related proteins exhibiting CC and CXC C-terminal sequences; the enzyme as well as its recognition motif are yet largely uncharacterized.  相似文献   

20.
Seven cDNA clones corresponding to the rab1, rab2, rab3A, rab3B, rab4, rab5, and rab6 genes were isolated from a human pheochromocytoma cDNA library. They encode 23-25 kDa polypeptides which share approximately 30-50% homology and belong to the ras superfamily. The rab1, rab2, rab3A, and rab4 proteins are the human counterparts of the rat rab gene products that we have previously characterized. Comparison of the seven human rab proteins with the yeast YPT1 (YPT1p) and SEC4 (SEC4p) proteins reveals highly significant sequence similarities. H-rab1p shows 75% amino acid identity with YPT1p and may be therefore considered as its human counterpart. The other proteins share approximately 40% homology with YPT1p and SEC4p. The homology (approximately 30%) between these rab proteins and p21ras is restricted to the four conserved domains involved in the GTP/GDP binding. Human rab proteins were produced in Escherichia coli. Large amounts of rab proteins in soluble form can be extracted and purified without the use of detergents. All six proteins bind GTP and exhibit GTPase activities. A possible involvement of the rab proteins in secretion is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号