首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterized a 24-kDa protein associated with matrix hsp70 (mt-hsp70) of Neurospora crassa and Saccharomyces cerevisiae mitochondria. By using specific antibodies, the protein was identified as MGE, a mitochondrial homolog of the prokaryotic heat shock protein GrpE. MGE extracted from mitochondria was quantitatively bound to hsp70. It was efficiently released from hsp70 by the addition of Mg-ATP but not by nonhydrolyzable ATP analogs or high salt. A mutant mt-hsp70, which was impaired in release of bound precursor proteins, released MGE in an ATP-dependent manner, indicating that precursor proteins and MGE bind to different sites of hsp70. A preprotein accumulated in transit across the mitochondrial membranes was specifically coprecipitated by either antibodies directed against MGE or antibodies directed against mt-hsp70. The preprotein accumulated at the outer membrane was not coprecipitated by either antibody preparation. After being imported into the matrix, the preprotein could be coprecipitated only by antibodies against mt-hsp70. We propose that mt-hsp70 and MGE cooperate in membrane translocation of preproteins.  相似文献   

2.
I Wagner  H Arlt  L van Dyck  T Langer    W Neupert 《The EMBO journal》1994,13(21):5135-5145
ATP dependent proteolytic degradation of misfolded proteins in the mitochondrial matrix is mediated by the PIM1 protease and depends on the molecular chaperone proteins mt-hsp70 and Mdj1p. Chaperone function is essential to maintain misfolded proteins in a soluble state, a prerequisite for their degradation by PIM1 protease. In the absence of functional mt-hsp70 or Mdj1p misfolded proteins either remain associated with mt-hsp70 or form aggregates and thereby are no longer substrates for PIM1 protease. Mdj1p is shown to regulate the ATP dependent association of an unfolded polypeptide chain with mt-hsp70 affecting binding to as well as release from mt-hsp70. These findings establish a central role of molecular chaperone proteins in the degradation of misfolded proteins by PIM1 protease and thereby demonstrate a functional interrelation between components of the folding machinery and the proteolytic system within mitochondria.  相似文献   

3.
To test the hypothesis that 70-kD mitochondrial heat shock protein (mt- hsp70) has a dual role in membrane translocation of preproteins we screened preproteins in an attempt to find examples which required either only the unfoldase or only the translocase function of mt-hsp70. We found that a series of fusion proteins containing amino-terminal portions of the intermembrane space protein cytochrome b2 (cyt. b2) fused to dihydrofolate reductase (DHFR) were differentially imported into mitochondria containing mutant hsp70s. A fusion protein between the amino-terminal 167 residues of the precursor of cyt. b2 and DHFR was efficiently transported into mitochondria independently of both hsp70 functions. When the length of the cyt. b2 portion was increased and included the heme binding domain, the fusion protein became dependent on the unfoldase function of mt-hsp70, presumably caused by a conformational restriction of the heme-bound preprotein. In the absence of heme the noncovalent heme binding domain in the longer fusion proteins no longer conferred a dependence on the unfoldase function. When the cyt. b2 portion of the fusion protein was less than 167 residues, its import was still independent of mt-hsp70 function; however, deletion of the intermembrane space sorting signal resulted in preproteins that ended up in the matrix of wild-type mitochondria and whose translocation was strictly dependent on the translocase function of mt-hsp70. These findings provide strong evidence for a dual role of mt-hsp70 in membrane translocation and indicate that preproteins with an intermembrane space sorting signal can be correctly imported even in mutants with severely impaired hsp70 function.  相似文献   

4.
The role of mitochondrial 70-kD heat shock protein (mt-hsp70) in protein translocation across both the outer and inner mitochondrial membranes was studied using two temperature-sensitive yeast mutants. The degree of polypeptide translocation into the matrix of mutant mitochondria was analyzed using a matrix-targeted preprotein that was cleaved twice by the processing peptidase. A short amino-terminal segment of the preprotein (40-60 amino acids) was driven into the matrix by the membrane potential, independent of hsp70 function, allowing a single cleavage of the presequence. Artificial unfolding of the preprotein allowed complete translocation into the matrix in the case where mutant mt-hsp70 had detectable binding activity. However, in the mutant mitochondria in which binding to mt-hsp70 could not be detected the mature part of the preprotein was only translocated to the intermembrane space. We propose that mt-hsp70 fulfills a dual role in membrane translocation of preproteins. (a) Mt-hsp70 facilitates unfolding of the polypeptide chain for translocation across the mitochondrial membranes. (b) Binding of mt-hsp70 to the polypeptide chain is essential for driving the completion of transport of a matrix- targeted preprotein across the inner membrane. This second role is independent of the folding state of the preprotein, thus identifying mt- hsp70 as a genuine component of the inner membrane translocation machinery. Furthermore we determined the sites of the mutations and show that both a functional ATPase domain and ATP are needed for mt- hsp70 to bind to the polypeptide chain and drive its translocation into the matrix.  相似文献   

5.
《The Journal of cell biology》1994,127(6):1547-1556
The import of preproteins into mitochondria involves translocation of the polypeptide chains through putative channels in the outer and inner membranes. Preprotein-binding proteins are needed to drive the unidirectional translocation of the precursor polypeptides. Two of these preprotein-binding proteins are the peripheral inner membrane protein MIM44 and the matrix heat shock protein hsp70. We report here that MIM44 is mainly exposed on the matrix side, and a fraction of mt- hsp70 is reversibly bound to the inner membrane. Mt-hsp70 binds to MIM44 in a 1:1 ratio, suggesting that mt-hsp70 is localizing to the membrane via its interaction with MIM44. Formation of the complex requires a functional ATPase domain of mt-hsp70. Addition of Mg-ATP leads to dissociation of the complex. Overexpression of mt-hsp70 rescues the protein import defect of mutants in MIM44; conversely, overexpression of MIM44 rescues protein import defects of mt-hsp70 mutants. In addition, yeast strains with conditional mutations in both MIM44 and mt-hsp70 are barely viable, showing a synthetic growth defect compared to strains carrying single mutations. We propose that MIM44 and mt-hsp70 cooperate in translocation of preproteins. By binding to MIM44, mt-hsp70 is recruited at the protein import sites of the inner membrane, and preproteins arriving at MIM44 may be directly handed over to mt-hsp70.  相似文献   

6.
We previously reported that hsp70 in the mitochondrial matrix (mt-hsp 70 = Ssclp) is required for import of precursor proteins destined for the matrix or intermembrane space. Here we show that mt-hsp70 is also needed for the import of mitochondrial inner membrane proteins. In particular, the precursor of ADP/ATP carrier that is known not to interact with hsp60 on its assembly pathway requires functional mt-hsp70 for import, suggesting a general role of mt-hsp70 in membrane translocation of precursors. Moreover, a precursor arrested in contact sites was specifically co-precipitated with antibodies directed against mt-hsp70. We conclude that mt-hsp70 is directly involved in the translocation of many, if not all, precursor proteins that are transported across the inner membrane.  相似文献   

7.
Ssc1, the major Hsp70 of the mitochondrial matrix, is involved in the translocation of proteins from the cytosol into the matrix and their subsequent folding. To better understand the physiological mechanism of action of this Hsp70, we have undertaken a biochemical analysis of Ssc1 and two mutant proteins, Ssc1--2 and Ssc1--201. ssc1--2 is a temperature-sensitive mutant defective in both translocation and folding; ssc1--201 contains a second mutation in this ssc1 gene that suppresses the temperature-sensitive growth defect of ssc1--2, correcting the translocation but not the folding defect. We found that although Ssc1 was competent to facilitate the refolding of denatured luciferase in vitro, both Ssc1--2 and Ssc1--201 showed significant defects, consistent with the data obtained with isolated mitochondria. Purified Ssc1--2 had a lowered affinity for a peptide substrate compared with wild-type Ssc1 but only in the ADP-bound state. This peptide binding defect was reversed in the suppressor protein Ssc1--201. However, a defect in the ability of Hsp40 to stimulate the ATPase activity of Ssc1--2 was not corrected in Ssc1--201. Thus, the inability of these two mutant proteins to efficiently facilitate luciferase refolding correlates with their defect in stimulation of ATPase activity by Hsp40s, indicating that this interaction is critical for protein folding in mitochondria.  相似文献   

8.
The mitochondrial heat shock protein Hsp70 (mtHsp70) is essential for driving translocation of preproteins into the matrix. Two models, trapping and pulling by mtHsp70, are discussed, but positive evidence for either model has not been found so far. We have analyzed a mutant mtHsp70, Ssc1-2, that shows a reduced interaction with the membrane anchor Tim44, but an enhanced trapping of preproteins. Unexpectedly, at a low inner membrane potential, ssc1-2 mitochondria imported loosely folded preproteins more efficiently than wild-type mitochondria. The import of a tightly folded preprotein, however, was not increased in ssc1-2 mitochondria. Thus, enhanced trapping by mtHsp70 stimulates the import of loosely folded preproteins and reduces the dependence on the import-driving activity of the membrane potential, directly demonstrating that trapping is one of the molecular mechanisms of mtHsp70 action.  相似文献   

9.
A J Caplan  D M Cyr  M G Douglas 《Cell》1992,71(7):1143-1155
The role of S. cerevisiae YDJ1 protein (YDJ1p) in polypeptide translocation across membranes has been examined. A conditional ydj1 mutant strain (ydj1-151TS) is defective for import of several polypeptides into mitochondria and alpha factor into the endoplasmic reticulum at 37 degrees C. These defects are suppressed by E. coli dnaJ or overexpression of S. cerevisiae SIS1 proteins. A different ydj1 mutant, which cannot be farnesylated (ydj1-S406), displays similar transport defects to the ydj1-151 strain. Furthermore, the ability of purified ydj1-151p to stimulate the ATPase activity of hsp70SSA1 was greatly diminished compared with the wild-type protein. Together, these data suggest that YDJ1p functions in polypeptide translocation in a conserved manner, probably acting at organelle membranes and in association with hsp70 proteins.  相似文献   

10.
D Skowyra  C Georgopoulos  M Zylicz 《Cell》1990,62(5):939-944
Pelham previously proposed that the hsp70 family of heat shock proteins could prevent the formation and/or allow the dissolution of protein aggregates created during stress conditions. We confirmed this hypothesis by showing that the E. coli hsp70 homolog, the dnaK gene product, protects the host RNA polymerase enzyme from heat inactivation in an ATP-independent reaction. In addition, we show that heat-inactivated and aggregated RNA polymerase is both disaggregated and reactivated following simultaneous incubation with DnaK protein and hydrolyzable ATP. The DnaK756 mutant protein has lost the ability to disaggregate the inactivated RNA polymerase enzyme. Our results demonstrate that the DnaK protein contributes to E. coli's growth not only by protecting some enzymes from denaturation but also by reactivating some once they are misfolded or aggregated.  相似文献   

11.
Cellular stress can trigger a process of self-destruction known as apoptosis. Cells can also respond to stress by adaptive changes that increase their ability to tolerate normally lethal conditions. Expression of the major heat-inducible protein hsp70 protects cells from heat-induced apoptosis. hsp70 has been reported to act in some situations upstream or downstream of caspase activation, and its protective effects have been said to be either dependent on or independent of its ability to inhibit JNK activation. Purified hsp70 has been shown to block procaspase processing in vitro but is unable to inhibit the activity of active caspase 3. Since some aspects of hsp70 function can occur in the absence of its chaperone activity, we examined whether hsp70 lacking its ATPase domain or the C-terminal EEVD sequence that is essential for peptide binding was required for the prevention of apoptosis. We generated stable cell lines with tetracycline-regulated expression of hsp70, hsc70, and chaperone-defective hsp70 mutants lacking the ATPase domain or the C-terminal EEVD sequence or containing AAAA in place of EEVD. Overexpression of hsp70 or hsc70 protected cells from heat shock-induced cell death by preventing the processing of procaspases 9 and 3. This required the chaperone function of hsp70 since hsp70 mutant proteins did not prevent procaspase processing or provide protection from apoptosis. JNK activation was inhibited by both hsp70 and hsc70 and by each of the hsp70 domain mutant proteins. The chaperoning activity of hsp70 is therefore not required for inhibition of JNK activation, and JNK inhibition was not sufficient for the prevention of apoptosis. Release of cytochrome c from mitochondria was inhibited in cells expressing full-length hsp70 but not in cells expressing the protein with ATPase deleted. Together with the recently identified ability of hsp70 to inhibit cytochrome c-mediated procaspase 9 processing in vitro, these data demonstrate that hsp70 can affect the apoptotic pathway at the levels of both cytochrome c release and initiator caspase activation and that the chaperone function of hsp70 is required for these effects.  相似文献   

12.
Several structurally divergent proteins associate with molecular chaperones of the 70-kDa heat shock protein (hsp70) family and modulate their activities. We investigated the cofactors Hap46 and Hop/p60 and the effects of their binding to mammalian hsp70 and the cognate form hsc70. Hap46 associates with the amino-terminal ATP binding domain and stimulates ATP binding two- to threefold but inhibits binding of misfolded protein substrate to hsc70 and reactivation of thermally denatured luciferase in an hsc70-dependent refolding system. By contrast, Hop/p60 interacts with a portion of the carboxy-terminal domain of hsp70s, which is distinct from that involved in the binding of misfolded proteins. Thus, Hop/p60 and substrate proteins can form ternary complexes with hsc70. Hop/p60 exerts no effect on ATP and substrate binding but nevertheless interferes with protein refolding. Even though there is no direct interaction between these accessory proteins, Hap46 inhibits the binding of Hop/p60 to hsc70 but Hop/p60 does not inhibit the binding of Hap46 to hsc70. As judged from respective deletions, the amino-terminal portions of Hap46 and Hop/p60 are involved in this interference. These data suggest steric hindrance between Hap46 and Hop/p60 during interaction with distantly located binding sites on hsp70s. Thus, not only do the major domains of hsp70 chaperones communicate with each other, but cofactors interacting with these domains affect each other as well.  相似文献   

13.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

14.
Proteins that are imported from the cytosol into mitochondria cross the mitochondrial membranes in an unfolded conformation and then fold in the matrix. Some of these proteins require the chaperonin hsp60 for folding. To test whether hsp60 is required for the folding of all imported matrix proteins, we monitored the folding of four monomeric proteins after import into mitochondria from wild-type yeast or from a mutant strain in which hsp60 had been inactivated. The four precursors included two authentic matrix proteins (rhodanese and the mitochondrial cyclophilin Cpr3p) and two artificial precursors (matrix-targeted variants of dihydrofolate reductase and barnase). Only rhodanese formed a tight complex with hsp60 and required hsp60 for folding. The three other proteins folded efficiently without, and showed no detectable binding to, hsp60. Thus, the mitochondrial chaperonin system is not essential for the folding of all matrix proteins. These data agree well with earlier in vitro studies, which had demonstrated that only a subset of proteins require chaperones for efficient folding.  相似文献   

15.
In mammalian cells, two of the so-called heat shock (hsp) or stress proteins are components of the mitochondria. One of these, hsp 58, is a member of the bacterial GroEL family, whereas the other, glucose-regulated protein (grp) 75, represents a member of the hsp 70 family of stress proteins. Owing to previous studies implicating a role for both the hsp 70 and GroEL families in facilitating protein maturation events, we used the method of native immunoprecipitation to examine whether hsp 58 and grp 75 might interact with other proteins of the mitochondria. In cells pulse-labeled with [35S]-methionine, a significant number of newly synthesized mitochondrial proteins co-precipitated with either hsp 58 or grp 75. Such interactions appeared transient. For example, providing the pulse-labeled cells a subsequent chase period in the absence of radiolabel resulted in a reduction of co-precipitating proteins. If the pulse-chase labeling experiments were performed in the presence of an amino acid analogue, somewhat different results were obtained. Specifically, although many of the newly synthesized and analogue-containing proteins again were observed to co-precipitate with grp 75, the interactions did not appear transient, but instead were stable. Under steady-state labeling conditions, we also observed a portion of hsp 58 and grp 75 in an apparent complex with one another. On addition of ATP, the complex was dissociated. Accompanying this dissociation was the concomitant autophosphorylation of grp 75. On the basis of these observations, as well as previous studies examining the structure/function of the hsp 70 and GroEL proteins, we suspect that both hsp 58 and grp 75 interact with and facilitate the folding and assembly of proteins as they enter into the mitochondria.  相似文献   

16.
The cellular role of Hsp100/Clp chaperones in maintaining protein stability is based on two functional aspects. Under normal growth conditions they represent components of cellular protein quality control machineries that selectively remove damaged or misfolded polypeptides in cooperation with specific proteases. After thermal stress, proteins of the ClpB subfamily have the unique ability to directly resolubilize aggregated polypeptides in concert with Hsp70-type chaperones, leading to the recovery of enzymatic activity. Hsp78, the homolog of the bacterial chaperone ClpB in mitochondria of eukaryotic organisms, participates in both protective activities. Hsp78 is involved in conferring thermotolerance to the mitochondrial compartment but also participates in protein degradation by the matrix protease Pim1. Despite the high sequence conservation between Hsp78 and ClpB, an analysis of the structural properties revealed significant differences. The identified mitochondrial Hsp78s do not contain N-terminal substrate-binding domains. In addition, formation of the oligomeric chaperone complex was more variable as anticipated from the studies with bacterial ClpB. Hsp78 predominantly formed a trimeric complex under in vivo conditions. Hence, mitochondrial Hsp78s form a distinct subgroup of the ClpB chaperone family, exhibiting specific structural and functional properties.  相似文献   

17.
18.
19.
All steroid receptors possess a bipartite nuclear localization signal sequence (NLS) that localizes within the second zinc finger of their DNA-binding domain. Fine-structure mapping of the rat glucocorticoid receptor (rGS) NLS identified a composite signal composed of three distinct proto-NLSs that function effectively when present in unique pairs. At least one of the rGR proto-NLSs appears to influence receptor trafficking within the nucleus, as revealed by a unique nuclear staining pattern of receptors possessing a point mutation (i.e., arginine at position 496; R496), at proto-NLS, pNLS-2. Specifically, carboxyl-terminal-truncated rGRs possessing various point mutations at R496 localized within a limited number of large foci in nuclei of transiently transfected COS-1 cells. R496 mutations did not affect subnuclear targeting when present in full-length rGR, reflecting a protective effect of the receptor's ligand-binding domain that can be exerted in cis and in trans. The effects of rGR R496 mutations on subnuclear targeting were not autonomous because we also observed a coincident localization of hsp70, the 70-kDa heat shock protein, within nuclear foci that include r496 mutant receptors. The elimination of R496 mistargeting by overexpression of an hsp70 partner (i.e., the DnaJ homologue, HDJ-2/HSDJ) suggests that the hsp70/DnaJ chaperone system is mobilized to specific sites within the nucleus in response to inappropriate targeting or folding of specific mutant receptors. HDJ-2/HSDJ overexpression also corrects defective transactivation and transrepression activity of R496 mutant GRs. Thus, molecular chaperones, such as members of the hsp70 and DnaJ families, may survey the nucleus for misfolded proteins and actively participate in their refolding into biologically active conformational states.  相似文献   

20.
Members of the heat shock protein 70 (Hsp70) family are found in most of the compartments of eukaryotic cells where they play essential roles in protein metabolism. In yeast mitochondria, two Hsp70 proteins are known: Ssc1 and Ssq1. We identified Ecm10 as a third Hsp70 protein in the mitochondrial matrix. Ecm10 shares 82% amino acid identity with Ssc1 and 54% with Ssq1. Overexpression of Ecm10 mitigates protein import defects in ssc1 mutants suggesting that Ecm10 can play a role in protein translocation. Like Ssc1, Ecm10 interacts with the nucleotide exchange factor Mge1 in an ATP-dependent manner. Deletion of ecm10 leads to synthetic growth defects with ssc1 mutations at low temperature. Our data suggest an overlapping function of Ecm10 and Ssc1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号