首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hedgehog (hh) genes encode secreted signaling proteins that have important developmental functions in vertebrates and invertebrates. In Drosophila, expression of hh coordinates retinal development by propagating a wave of photoreceptor differentiation across the eye primordium. Here we report that two vertebrate hh genes, sonic hedgehog (shh) and tiggy-winkle hedgehog (twhh), may perform similar functions in the developing zebrafish. Both shh and twhh are expressed in the embryonic zebrafish retinal pigmented epithelium (RPE), initially in a discrete ventral patch which then expands outward in advance of an expanding wave of photoreceptor recruitment in the subjacent neural retina. A gene encoding a receptor for the hedgehog protein, ptc-2, is expressed by retinal neuroepithelial cells. Injection of a cocktail of antisense (alphashh/alphatwhh) oligonucleotides reduces expression of both hh genes in the RPE and slows or arrests the progression of rod and cone photoreceptor differentiation. Zebrafish strains known to have mutations in Hh signaling pathway genes similarly exhibit retardation of photoreceptor differentiation. We propose that hedgehog genes may play a role in propagating photoreceptor differentiation across the developing eye of the zebrafish.  相似文献   

2.
3.
4.
5.
The segment polarity geneswingless (wg) andengrailed (en) have been shown to play important roles in pattern formation at different stages ofDrosophila development in the thoracic imaginai discs. We have studied the patterns of expression of these genes in genital discs from wild type larvae, pupae and pharate adults and also from hetero-allelic mutant combinations of these genes. Our results suggest that these genes play vital roles in the normal development and differentiation of genital discs and gonads. In the absence of normalwg oren functions, the flies showed a complete lack of internal accessory reproductive organs and specific defects in the external genitalia. In addition, the testes in such males were small, rounded and with an abnormal cellular organization, although the ovaries in females appeared normal. Temperature shift experiments using the conditional mutant allele ofwg, (wg IL-114 ) indicated a requirement ofwg signaling from second instar onwards for normal development and differentiation of the accessory reproductive organs. Using a heat-shock allele (Hs-wg) we also show that the spatially regulated expression ofwg as a pre-requisite for normal development and differentiation. Based on the expression patterns ofen andhedgehog (hh) we suggest that even in the genital disc development and differentiation the action ofen is mediated throughhh.  相似文献   

6.
The evolution of arthropod segmentation has been studied by comparing expression patterns of pair-rule and segment polarity genes in various species. In Drosophila, the formation and maintenance of the parasegmental boundaries depend on the interactions between the wingless (wg), engrailed (en) and hedgehog (hh) genes. Until now, the expression pattern of hh has not been analysed to such a great extent as en or wg. We report the cloning and expression analysis of hh genes from Euscorpius flavicaudis, a chelicerate, and Artemia franciscana, a branchiopod crustacean. Our data provide evidence that hh, being expressed in the posterior part of every segment, is a segment polarity gene in both organisms. Additional hh expression sites were observed in the rostrum and appendages of Euscorpius and in the gut of Artemia. From the available data on hh expression in various bilaterians, we review the various hypotheses on the evolution of hh function and we suggest an ancestral role of hh in proctodeum specification and gut formation.Edited by D. Tautz  相似文献   

7.
8.
9.
The development of extraocular orbital structures, in particular the choroid and sclera, is regulated by a complex series of interactions between neuroectoderm, neural crest and mesoderm derivatives, although in many instances the signals that mediate these interactions are not known. In this study we have investigated the function of Indian hedgehog (Ihh) in the developing mammalian eye. We show that Ihh is expressed in a population of non-pigmented cells located in the developing choroid adjacent to the RPE. The analysis of Hh mutant mice demonstrates that the RPE and developing scleral mesenchyme are direct targets of Ihh signaling and that Ihh is required for the normal pigmentation pattern of the RPE and the condensation of mesenchymal cells to form the sclera. Our findings also indicate that Ihh signals indirectly to promote proliferation and photoreceptor specification in the neural retina. This study identifies Ihh as a novel choroid-derived signal that regulates RPE, sclera and neural retina development.  相似文献   

10.
Prykhozhij SV 《PloS one》2010,5(10):e13549

Background

Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation.

Methodology/Principal Findings

Analysis of the zebrafish shh −/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh −/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh −/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh −/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 −/− shh −/− mutant retina suggesting the effect of p53 on retinal differentiation.

Conclusions

Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.  相似文献   

11.
12.
13.
14.
15.
16.
Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N‐cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin‐17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin‐17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin‐17 specific antisense morpholino oligonucleotides (MOs). Protocadherin‐17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin‐17 mRNA. Injection of a vivo‐protocadherin‐17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin‐17 plays an important role in the normal formation of the zebrafish retina. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

17.
The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially develop in cavefish embryos, but the lens dies by apoptosis. The cavefish retina is subsequently disorganized, apoptotic cells appear, the photoreceptor layer degenerates, and retinal growth is arrested. We show here by PCNA, BrdU, and TUNEL labeling that cell proliferation continues in the adult cavefish retina but the newly born cells are removed by apoptosis. Surface fish to cavefish lens transplantation, which restores retinal growth and rod cell differentiation, abolished apoptosis in the retina but not in the RPE. Surface fish lens deletion did not cause apoptosis in the surface fish retina or affect RPE differentiation. Neither lens transplantation in cavefish nor lens deletion in surface fish affected retinal cell proliferation. We conclude that the lens acts in concert with another optic component, possibly the RPE, to promote retinal cell survival. Accordingly, deficiency in both optic structures may lead to eye degeneration in cavefish.  相似文献   

18.
19.
20.
Stable subdivision of Drosophila limbs into Anterior (A) and Posterior (P) compartments is a consequence of asymmetric signaling by Hedgehog (Hh) from P to A cells. The activity of the homeodomain protein Engrailed (En) in P cells has been reported to help to generate this asymmetry by inducing the expression of hedgehog and simultaneously repressing the expression of the essential downstream component of the Hh signaling pathway Cubitus interruptus (Ci). In A cells, Ci has a major role in the repression of hh. Here we have revised the genetic and epigenetic mechanisms involved in the regulation of hh in the P compartment. First, we present evidence that hh expression in P cells is a consequence of the repression of ci by the activity of En. Thus, in the absence of Ci and En activities, cells do express hh. We also present data supporting the maintenance of hh expression in P cells through epigenetic mechanisms, and a permissive role of Notch signaling in this process. Notch and Trithorax (TrxG) group of proteins exert their action through a previously defined hh Polycomb Responsive Element (PRE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号