首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The influence of Cl, Br, NO3 and F ions on the visible-absorption spectrum of deionized aspartate aminotransferase was investigated. 2. Except for F, these anions caused an increase of the extinction at 430mμ with a concomitant decrease of that at 362mμ. 3. The affinity constants for Cl and NO3 ions were calculated by a procedure based on the assumption that the anion stabilizes the protonated form of the enzyme chromophore (λmax. 430mμ). 4. The true pK of the chromophore of the enzyme was found to be 5·25.  相似文献   

2.
Respiratory Chain of Colorless Algae II. Cyanophyta   总被引:7,自引:2,他引:5       下载免费PDF全文
Whole cell difference spectra of the blue-green algae, Saprospira grandis, Leucothrix mucor, and Vitreoscilla sp. have one, or at the most 2, broad α-bands near 560 mμ. At −190° these bands split to give 4 peaks in the α-region for b and c-type cytochromes, but no α-band for a-type cytochromes is visible. The NADH oxidase activity of these organisms was shown to be associated with particulate fractions of cell homogenates. The response of this activity to inhibitors differed from the responses of the NADH oxidase activities of particulate preparations from the green algae and higher plants to the same inhibitors, but is more typical of certain bacteria. No cytochrome oxidase activity was present in these preparations. The respiration of Saprospira and Vitreoscilla can be light-reversibly inhibited by CO, and all 3 organisms have a CO-binding pigment whose CO complex absorbs near 570, 535, and 417 mμ. The action spectrum for the light reversal of CO-inhibited Vitreoscilla respiration shows maxima at 568, 534, and 416 mμ. The results suggest that the terminal oxidase in these blue-greens is an o-type cytochrome.  相似文献   

3.
Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17μmol.m−2.s−1) and clipping (2.06μmol.m−2.s−1) than under grazing (1.65μmol.m−2.s−1) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.  相似文献   

4.
Rates of primary and bacterial secondary production in Lake Arlington, Texas, were determined. The lake is a warm (annual temperature range, 7 to 32°C), shallow, monomictic reservoir with limited macrophyte development in the littoral zone. Samples were collected from six depths within the photic zone from a site located over the deepest portion of the lake. Primary production and bacterial production were calculated from NaH14CO3 and [methyl-3H]thymidine incorporation, respectively. Peak instantaneous production ranged between 14.8 and 220.5 μg of C liter−1 h−1. There were two distinct periods of high rates of production. From May through July, production near the metalimnion exceeded 100 μg of C liter−1 h−1. During holomixis, production throughout the water column was in excess of 100 μg of C liter−1 h−1 and above 150 μg of C liter−1 h−1 near the surface. Annual areal primary production was 588 g of C m−2. Bacterial production was markedly seasonal. Growth rates during late fall through spring were typically around 0.002 h−1, and production rates were typically 5 μg of C liter−1 h−1. Growth rates were higher during warmer parts of the year and reached 0.03 h−1 by August. The maximum instantaneous rate of bacterial production was approximately 45 μg of C liter−1 h−1. Annual areal bacterial production was 125 g of C m−2. Temporal and spatial distributions of bacterial numbers and activities coincided with temporal and spatial distributions of primary production. Areal primary and bacterial secondary production were highly correlated (r = 0.77, n = 15, P < 0.002).  相似文献   

5.
The lon mutants of Escherichia coli grow apparently normally except that, after temporary periods of inhibition of deoxyribonucleic acid synthesis, septum formation is specifically inhibited. Under these conditions, long, multinucleate, nonseptate filaments result. The lon mutation also creates a defect such that wild-type bacteriophage λ fails to lysogenize lon mutants efficiently and consequently forms clear plaques on a lon host. Two lines of evidence suggest that this failure probably results from interference with expression of the λcI gene, which codes for repressor, or with repressor action:-(i) when a lon mutant was infected with a λcII, cIII, or c Y mutant, there was an additive effect between the lon mutation and the λc mutations upon reduction of lysogenization frequency; and (ii) lon mutants permitted the growth of the λcro mutant under conditions in which the repressor was active. The isolation of λ mutants (λtp) which gained the ability to form turbid plaques on lon cells is also reported.  相似文献   

6.
This paper shows that the “second Emerson effect”1 exists not only in photosynthesis, but also in the quinone reduction (Hill reaction), in Chlorella pyrenoidosa and Anacystis nidulans. The peaks at 650 mμ, 600 mμ, 560 mμ, 520 mμ, and 480 mμ, observed in the action spectrum of this effect in the Hill reaction in Chorella, are attributable to chlorophyll b; the occurrence of an additional peak at 670 mμ, 620 mμ, and of two (or three) peaks in the blueviolet region suggests that (at least) one form of chlorophyll a contributes to it. In analogy to suggestions made previously in the interpretation of the Emerson effect in photosynthesis, these results are taken as indicating that excitation by light preferentially absorbed by one (or two) forms of chlorophyll a (Chl a 690 + 700), needs support by simultaneous absorption of light in another form of chlorophyll a (Chl a 670)—directly or via energy transfer from chlorophyll b—in order to produce the Hill reaction with its full quantum yield. In Anacystis, the participation of phycocyanin in the Emerson effect in the Hill reaction is revealed by the occurrence, in the action spectrum of this effect, of peaks at about 560 mμ, 610 mμ, and 640 mμ; a peak at 670 mμ, due to Chl a 670, also is present.  相似文献   

7.
Spectral analysis indicated the presence of a cytochrome cbb3 oxidase under microaerobic conditions in Azospirillum brasilense Sp7 cells. The corresponding genes (cytNOQP) were isolated by using PCR. These genes are organized in an operon, preceded by a putative anaerobox. The phenotype of an A. brasilense cytN mutant was analyzed. Under aerobic conditions, the specific growth rate during exponential phase (μe) of the A. brasilense cytN mutant was comparable to the wild-type specific growth rate (μe of approximately 0.2 h−1). In microaerobic NH4+-supplemented conditions, the low respiration of the A. brasilense cytN mutant affected its specific growth rate (μe of approximately 0.02 h−1) compared to the wild-type specific growth rate (μe of approximately 0.2 h−1). Under nitrogen-fixing conditions, both the growth rates and respiration of the wild type were significantly diminished in comparison to those under NH4+-supplemented conditions. Differences in growth rates and respiration between the wild type and the A. brasilense cytN mutant were less pronounced under these nitrogen-fixing conditions (μe of approximately 0.03 h−1 for the wild type and 0.02 h−1 for the A. brasilense cytN mutant). The nitrogen-fixing capacity of the A. brasilense cytN mutant was still approximately 80% of that determined for the wild-type strain. This leads to the conclusion that the A. brasilense cytochrome cbb3 oxidase is required under microaerobic conditions, when a high respiration rate is needed, but that under nitrogen-fixing conditions the respiration rate does not seem to be a growth-limiting factor.  相似文献   

8.
Understanding the response mechanisms of litter respiration to soil moisture in water-limited semi-arid regions is of vital importance to better understanding the interplay between ecological processes and the local carbon cycle. In situ soil respiration was monitored during 2010–2012 under various conditions (normal litter, no litter, and double litter treatments) in a 30-year-old artificial black locust plantation (Robinia pseudoacacia L.) on the Loess Plateau. Litter respiration with normal and double litter treatments exhibited similar seasonal variation, with the maximum value obtained in summer (0.57 and 1.51 μmol m−2 s−1 under normal and double litter conditions, respectively) and the minimum in spring (0.27 and 0.69 μmol m−2 s−1 under normal and double litter conditions, respectively). On average, annual cumulative litter respiration was 115 and 300 g C m−2 y−1 under normal and double litter conditions, respectively. Using a soil temperature of 17°C as the critical point, the relationship between litter respiration and soil moisture was found to follow quadratic functions well, whereas the determination coefficient was much greater at high soil temperature than at low soil temperature (33–35% vs. 22–24%). Litter respiration was significantly higher in 2010 and 2012 than in 2011 under both normal litter (132–165 g C m−2 y−1 vs. 48 g C m−2 y−1) and double litter (389–418 g C m−2 y−1 vs. 93 g C m−2 y−1) conditions. Such significant interannual variations were largely ascribed to the differences in summer rainfall. Our study demonstrates that, apart from soil temperature, moisture also has significant influence on litter respiration in semi-arid regions.  相似文献   

9.
Microfungi and Microbial Activity Along a Heavy Metal Gradient   总被引:4,自引:0,他引:4       下载免费PDF全文
Soil fungal biomass, microfungal species composition, and soil respiration rate of conifer mor soil were studied along a steep copper and zinc gradient (up to 20,000 μg of Cu and 20,000 μg of Zn g−1 dry soil) around a brass mill near the town of Gusum in South Sweden. Fungal biomass and soil respiration rate decreased by about 75% along the metal gradient. Above 1,000 μg of Cu g−1, the decrease was clearly evident; below 1,000 μg of Cu g−1, no obvious effects were observed, but there was a tendency for a decrease in total mycelial length. No decrease in CFU was found along the gradient, but fungal species composition was drastically changed. The frequency of the genera Penicillium and Oidiodendron decreased from about 30 and 20%, respectively, at the control sites to only a few percent close to the mill. Mortierella was most frequently isolated in moderately polluted sites, but at the highest pollution levels, a decrease in isolation frequency was evident. Some fungal taxa increased in abundance towards the mill, e.g., Geomyces (from 1 to 10%), Paecilomyces (0 to 10%), and sterile forms (from 10 to 20%). Analyses with a multivariate statistical method (partial least squares) showed that organic matter content and soil moisture had little influence on the fungal community compared with the heavy metal pollution.  相似文献   

10.
The production of microcystins (MC) from Microcystis aeruginosa UTEX 2388 was investigated in a P-limited continuous culture. MC (MC-LR, MC-RR, and MC-YR) from lyophilized M. aeruginosa were extracted with 5% acetic acid, purified by a Sep-Pak C18 cartridge, and then analyzed by high-performance liquid chromatography with a UV detector and Nucleosil C18 reverse-phase column. The specific growth rate (μ) of M. aeruginosa was within the range of 0.1 to 0.8/day and was a function of the cellular P content under a P limitation. The N/P atomic ratio of steady-state cells in a P-limited medium varied from 24 to 15 with an increasing μ. The MC-LR and MC-RR contents on a dry weight basis were highest at μ of 0.1/day at 339 and 774 μg g−1, respectively, while MC-YR was not detected. The MC content of M. aeruginosa was higher at a lower μ, whereas the MC-producing rate was linearly proportional to μ. The C fixation rate at an ambient irradiance (160 microeinsteins m−2 s−1) increased with μ. The ratios of the MC-producing rate to the C fixation rate were higher at a lower μ. Accordingly, the growth of M. aeruginosa was reduced under a P limitation due to a low C fixation rate, whereas the MC content was higher. Consequently, increases in the MC content per dry weight along with the production of the more toxic form, MC-LR, were observed under more P-limited conditions.  相似文献   

11.
Tributyltin in the concentration range 1–4μm failed to stimulate Ca2+ transport by Lucilia flight-muscle mitochondria in a medium containing KCl and respiratory substrate but devoid of Pi, despite its promotion of a rapid Cl/OH exchange. When 2mm-Pi was present, concentrations of tributyltin greater than 1μm inhibited the initial rate of Ca2+ transport and induced efflux of the ion from the mitochondria in Cl- or NO3-containing media. Lower concentrations had little effect. Oligomycin added at up to 10μg/mg of mitochondrial protein had no effect on Ca2+ transport. By contrast, approx. 0.3μm-tributyltin completely inhibited respiration supported by α-glycerophosphate in either the presence or absence of added ADP. The data suggest that tributyltin can inhibit Ca2+ transport in Lucilia flight-muscle mitochondria other than by facilitating a Cl/OH exchange or producing an oligomycin-like effect.  相似文献   

12.
KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was pursued. For these studies, a truncated murine KIF3AB was generated. The results presented show that microtubule association was fast at 5.7 μm−1 s−1, followed by rate-limiting ADP release at 12.8 s−1. ATP binding at 7.5 μm−1 s−1 was followed by an ATP-promoted isomerization at 84 s−1 to form the intermediate poised for ATP hydrolysis, which then occurred at 33 s−1. ATP hydrolysis was required for dissociation of the microtubule·KIF3AB complex, which was observed at 22 s−1. The dissociation step showed an apparent affinity for ATP that was very weak (K½,ATP at 133 μm). Moreover, the linear fit of the initial ATP concentration dependence of the dissociation kinetics revealed an apparent second-order rate constant at 0.09 μm−1 s−1, which is inconsistent with fast ATP binding at 7.5 μm−1 s−1 and a Kd,ATP at 6.1 μm. These results suggest that ATP binding per se cannot account for the apparent weak K½,ATP at 133 μm. The steady-state ATPase Km,ATP, as well as the dissociation kinetics, reveal an unusual property of KIF3AB that is not yet well understood and also suggests that the mechanochemistry of KIF3AB is tuned somewhat differently from homodimeric processive kinesins.  相似文献   

13.
The spring development of both phytoplankton and bacterioplankton was investigated between 18 April and 7 May 1983 in mesotrophic Lake Erken, Sweden. By using the lake as a batch culture, our aim was to estimate, via different methods, the production of phytoplankton and bacterioplankton in the lake and to compare these production estimates with the actual increase in phytoplankton and bacterioplankton biomass. The average water temperature was 3.5°C. Of the phytoplankton biomass, >90% was the diatom Stephanodiscus hantzchii var. pusillus, by the peak of the bloom. The 14C and O2 methods of estimating primary production gave equivalent results (r = 0.999) with a photosynthetic quotient of 1.63. The theoretical photosynthetic quotient predicted from the C/NO3 N assimilation ratio was 1.57. The total integrated incorporation of [14C]bicarbonate into particulate material (>1 μm) was similar to the increase in phytoplankton carbon determined from cell counts. Bacterioplankton increased from 0.5 × 109 to 1.52 × 109 cells liter−1 (~0.5 μg of C liter−1 day−1). Estimates of bacterioplankton production from rates of [3H]thymidine incorporation were ca. 1.2 to 1.7 μg of C liter−1 day−1. Bacterial respiration, measured by a high-precision Winkler technique, was estimated as 4.8 μg of C liter−1 day−1, indicating a bacterial growth yield of 25%. The bulk of the bacterioplankton production was accounted for by algal extracellular products. Gross bacterioplankton production (production plus respiration) was 20% of gross primary production, per square meter of surface area. We found no indication that bacterioplankton production was underestimated by the [3H]thymidine incorporation method.  相似文献   

14.
The effects of exogenously supplied isoprene on chlorophyll fluorescence characteristics were examined in leaf discs of four isoprene-emitting plant species, kudzu (Pueraria lobata [Willd.] Ohwi.), velvet bean (Mucuna sp.), quaking aspen (Populus tremuloides Michx.), and pussy willow (Salix discolor Muhl). Isoprene, supplied to the leaves at either 18 μL L−1 in compressed air or 21 μL L−1 in N2, had no effect on the temperature at which minimal fluorescence exhibited an upward inflection during controlled increases in leaf-disc temperature. During exposure to 1008 μmol photons m−2 s−1 in an N2 atmosphere, 21 μL L−1 isoprene had no effect on the thermally induced inflection of steady-state fluorescence. The maximum quantum efficiency of photosystem II photochemistry decreased sharply as leaf-disc temperature was increased; however, this decrease was unaffected by exposure of leaf discs to 21 μL L−1 isoprene. Therefore, there were no discernible effects of isoprene on the occurrence of symptoms of high-temperature damage to thylakoid membranes. Our data do not support the hypothesis that isoprene enhances leaf thermotolerance.  相似文献   

15.
The kinetics of the 520 mμ absorption change in spinach chloroplasts and Chlorella vulgaris following a flash from the ruby laser have been determined as follows: rise halftime ≤ 0.3 × 10−6 second; rapid recovery halftime = 5 to 6 × 10−6 second; intermediate recovery halftime = 4 × 10−4 second (spinach chloroplasts only); slow recovery halftime = 12 to 170 × 10−3 second, dependent on the measuring light intensity and aerobicity of the suspension.

The rapid phase of the 520 mμ reaction is approximately independent of temperature, from 295° to 77° Absolute.

With increasing oxygenation of the sample, the extent of the rapid phase decreases, the extent of the slow phase increases, while the extent of the intermediate phase in spinach chloroplasts remains constant.

In spinach chloroplasts, no recovery halftime of the 3 recovery phases for the 520 mμ absorption change was observed to correspond to the halftime for oxidation of cytochrome f (t½ = 1.3 × 10−3 second).

  相似文献   

16.
The rates of ingestion of natural bacterial assemblages by natural populations of zooplankton (>50 μm in size) were measured during a 19-day period in eutrophic Frederiksborg Slotssø, Denmark, as well as in experimental enclosures (containing 5.3 m3 of lake water). The fish and nutrients of the enclosures were manipulated. In enclosures without fish, large increases in ingestion by zooplankton >140 μm in size were found (up to 3 μg of C liter−1 h−1), compared with values less than 0.3 μg of C liter−1 h−1 in the enclosures with fish and in the open lake. Daphnia cucullata and D. galeata dominated the community of zooplankton of >140 μm. Ingestion rates for zooplankton between 50 and 140 μm decreased after a period of about 8 days, in all enclosures and in the lake, to values below 0.1 μg of C liter−1 h−1. On the last 2 sampling days, somewhat higher values were observed in the enclosures with fish present. The >50-μm zooplankton ingested 48 to 51% of the bacterial net secondary production in enclosures without fish, compared to 4% in the enclosures with added fish. Considering the sum of bacterial secondary production plus biomass change, 35 to 41% of the available bacteria were ingested by zooplankton of >50 μm in the enclosures without fish, compared with 4 to 6% in the enclosures with added fish and 21% in the open lake. Fish predation reduced the occurrence of zookplankton sized >50 μm and thus left a large proportion of the available bacteria to zooplankton sized <50 μm. In fact, there were 4.6 × 103 to 5.0 × 103 flagellates (4 to 8 μm in size) ml−1 in the enclosures with fish added as well as in the lake, compared with 0.5 × 102 to 2.3 × 102 ml−1 in the enclosures without fish. This link in the food chain was reduced when fish predation on zooplankton was eliminated and a direct route of dissolved organic matter, via the bacteria to the zooplankton, was established.  相似文献   

17.
Photochemical and Nonphotochemical Reactions of Phytochrome in vivo   总被引:24,自引:22,他引:2       下载免费PDF全文
The nonphotochemical reactions of phytochrome in the coleoptiles of dark-grown corn seedlings were studied at 3 temperatures: 14°, 24°, and 34°. The data obtained show that the destruction of Pfr is the only measurable reaction occurring; reversion of Pfr to Pr was not found. The Q10's (2.7 and 3.5) and zero order kinetics found for the destruction reaction are consistent with the hypothesis that the reaction is enzyme-mediated.

In vivo action spectra for phytochrome transformation in the coleoptiles of darkgrown corn seedlings were obtained which agree qualitatively with those obtained by other workers for phytochrome-mediated physiological responses and in vitro action spectra. In vivo conversion of phytochrome by blue light, as determined from spectrophotometric measurements of phytochrome itself, is reported. Action peaks for Pr were found at 667 mμ and in the blue in the region of 400 mμ, with a broad shoulder from 590 mμ to 640 mμ. Action peaks for Pfr were found at 725 mμ and in the blue in the region of 400 mμ with a minor peak at 670 mμ, and a broad shoulder from 590 mμ to 640 mμ. The ratio of the quantum efficiencies of Pr at 667 mμ and Pfr at 725 mμ (Φr667fr725) was estimated to be 1.0.

  相似文献   

18.
Needles from phosphorus deficient seedlings of Pinus radiata D. Don grown for 8 weeks at either 330 or 660 microliters CO2 per liter displayed chlorophyll a fluorescence induction kinetics characteristic of structural changes within the thylakoid chloroplast membrane, i.e. constant yield fluorescence (FO) was increased and induced fluorescence ([FP-FI]/FO) was reduced. The effect was greatest in the undroughted plants grown at 660 μl CO2 L−1. By week 22 at 330 μl CO2 L−1 acclimation to P deficiency had occurred as shown by the similarity in the fluorescence characteristics and maximum rates of photosynthesis of the needles from the two P treatments. However, acclimation did not occur in the plants grown at 660 μl CO2 L−1. The light saturated rate of photosynthesis of needles with adequate P was higher at 660 μl CO2 L−1 than at 330 μl CO2 L−1, whereas photosynthesis of P deficient plants showed no increase when grown at the higher CO2 concentration. The average growth increase due to CO2 enrichment was 14% in P deficient plants and 32% when P was adequate. In drought stressed plants grown at 330 μl CO2 L−1, there was a reduction in the maximal rate of quenching of fluorescence (RQ) after the major peak. Constant yield fluorescence was unaffected but induced fluorescence was lower. These results indicate that electron flow subsequent to photosystem II was affected by drought stress. At 660 μl CO2 L−1 this response was eliminated showing that CO2 enrichment improved the ability of the seedlings to acclimate to drought stress. The average growth increase with CO2 enrichment was 37% in drought stressed plants and 19% in unstressed plants.  相似文献   

19.
Light acclimation during and after leaf expansion in soybean   总被引:10,自引:7,他引:3       下载免费PDF全文
Soybean plants (Glycine max var. Ransom) were grown at light intensities of 850 and 250 μeinsteins m−2 sec−1 of photosynthetically active radiation. A group of plants was shifted from each environment into the other environment 24 hours before the beginning of the experiment. Net photosynthetic rates and stomatal conductances were measured at 2,000 and 100 μeinsteins m−2 sec−1 photosynthetically active radiation on the 1st, 2nd, and 5th days of the experiment to determine the time course of photosynthetic light adaptation. The following factors were also measured: dark respiration, leaf water potential, leaf thickness, internal surface area per external surface area, chlorophyll content, photosynthetic unit size and number, specific leaf weight, and activities of malate dehydrogenase, and glycolate oxidase. Comparisons were made with plants maintained in either 850 or 250 μeinsteins m−2 sec−1 environments. Changes in photosynthesis, stomatal conductance, leaf anatomy, leaf water potential, photosynthetic unit size, and glycolate oxidase activity occurred upon altering the light environment, and were complete within 1 day, whereas chlorophyll content, numbers of photosynthetic units, specific leaf weight, and malate dehydrogenase activity showed slower changes. Differences in photosynthetic rates at high light were largely accounted for by internal surface area differences with low environmental light associated with low internal area and low photosynthetic rate. An exception to this was the fact that plants grown at 250 μeinsteins m−2 sec−1 then switched to 850 μeinsteins m−2 sec−1 showed lower photosynthesis at high light than any other treatment. This was associated with higher glycolate oxidase and malate dehydrogenase activity. Photosynthesis at low light was higher in plants kept at or switched to the lower light environment. This increased rate was associated with larger photosynthetic unit size, and lower dark respiration and malate dehydrogenase activity. Both anatomical and physiological changes with environmental light occurred even after leaf expansion was complete and both were important in determining photosynthetic response to light.  相似文献   

20.
The competition for glucose between Escherichia coli ML30, a typical copiotrophic enterobacterium and Chelatobacter heintzii ATCC29600, an environmentally successful strain, was studied in a carbon-limited culture at low dilution rates. First, as a base for modelling, the kinetic parameters μmax and Ks were determined for growth with glucose. For both strains, μmax was determined in batch culture after different precultivation conditions. In the case of C. heintzii, μmax was virtually independent of precultivation conditions. When inoculated into a glucose-excess batch culture medium from a glucose-limited chemostat run at a dilution rate of 0.075 h−1 C. heintzii grew immediately with a μmax of 0.17±0.03 h−1. After five transfers in batch culture, μmax had increased only slightly to 0.18±0.03 h−1. A different pattern was observed in the case of E. coli. Inoculated from a glucose-limited chemostat at D=0.075 h−1 into glucose-excess batch medium E. coli grew only after an acceleration phase of ∼3.5 h with a μmax of 0.52 h−1. After 120 generations and several transfers into fresh medium, μmax had increased to 0.80±0.03 h−1. For long-term adapted chemostat-cultivated cells, a Ks for glucose of 15 μg l−1 for C. heintzii, and of 35 μg l−1 for E. coli, respectively, was determined in 14C-labelled glucose uptake experiments. In competition experiments, the population dynamics of the mixed culture was determined using specific surface antibodies against C. heintzii and a specific 16S rRNA probe for E. coli. C. heintzii outcompeted E. coli in glucose-limited continuous culture at the low dilution rates of 0.05 and 0.075 h−1. Using the determined pure culture parameter values for Ks and μmax, it was only possible to simulate the population dynamics during competition with an extended form of the Monod model, which includes a finite substrate concentration at zero growth rate (smin). The values estimated for smin were dependent on growth rate; at D=0.05 h−1, it was 12.6 and 0 μg l−1 for E. coli and C. heintzii, respectively. To fit the data at D=0.075 h−1, smin for E. coli had to be raised to 34.9 μg l−1 whereas smin for C. heintzii remained zero. The results of the mathematical simulation suggest that it is not so much the higher Ks value, which is responsible for the unsuccessful competition of E. coli at low residual glucose concentration, but rather the existence of a significant smin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号