首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins are required for the expression of viral early and late proteins. It has been hypothesized that host neuronal proteins regulate expression of HSV-1 IE genes that in turn control viral latency and reactivation. We investigated the ability of neuronal proteins in vivo to activate HSV-1 IE gene promoters (ICP0 and ICP27) and a late gene promoter (gC). Transgenic mice containing IE (ICP0 and ICP27) and late (gC) gene promoters of HSV-1 fused to the Escherichia coli beta-galactosidase coding sequence were generated. Expression of the ICP0 and ICP27 reporter transgenes was present in anatomically distinct subsets of neurons in the absence of viral proteins. The anatomic locations of beta-galactosidase-positive neurons in the brains of ICP0 and ICP27 reporter transgenic mice were similar and included cerebral cortex, lateral septal nucleus, cingulum, hippocampus, thalamus, amygdala, and vestibular nucleus. Trigeminal ganglion neurons were positive for beta-galactosidase in adult ICP0 and ICP27 reporter transgenic mice. The ICP0 reporter transgene was differentially regulated in trigeminal ganglion neurons depending upon age. beta-galactosidase-labeled cells in trigeminal ganglia and cerebral cortex of ICP0 and ICP27 reporter transgenic mice were confirmed as neurons by double labeling with antineurofilament antibody. Nearly all nonneuronal cells in ICP0 and ICP27 reporter transgenic mice and all neuronal and nonneuronal cells in gC reporter transgenic mice were negative for beta-galactosidase labeling in the absence of HSV-1. We conclude that factors in neurons are able to differentially regulate the HSV-1 IE gene promoters (ICP0 and ICP27) in transgenic mice in the absence of viral proteins. These findings are important for understanding the regulation of the latent and reactivated stages of HSV-1 infection in neurons.  相似文献   

2.
Adenovirus vector expressing functional herpes simplex virus ICP0.   总被引:10,自引:7,他引:3       下载免费PDF全文
X X Zhu  C S Young    S Silverstein 《Journal of virology》1988,62(12):4544-4553
  相似文献   

3.
4.
McMahon R  Walsh D 《Journal of virology》2008,82(20):10218-10230
Quiescent infection of cultured cells with herpes simplex virus type 1 (HSV-1) provides an important, amenable means of studying the molecular mechanics of a nonproductive state that mimics key aspects of in vivo latency. To date, establishing high-multiplicity nonproductive infection of human cells with wild-type HSV-1 has proven challenging. Here, we describe simple culture conditions that established a cell state in normal human diploid fibroblasts that supported efficient quiescent infection using wild-type virus and exhibited many important properties of the in vivo latent state. Despite the efficient production of immediate early (IE) proteins ICP4 and ICP22, the latter remained unprocessed, and viral late gene products were only transiently and inefficiently produced. This low level of virus activity in cultures was rapidly suppressed as the nonproductive state was established. Entry into quiescence was associated with inefficient production of the viral trans-activating protein ICP0, and the accumulation of enlarged nuclear PML structures normally dispersed during productive infection. Lytic replication was rapidly and efficiently restored by exogenous expression of HSV-1 ICP0. These findings are in agreement with previous models in which quiescence was established with HSV mutants disrupted in their expression of IE gene products that included ICP0 and, importantly, provide a means to study cellular mechanisms that repress wild-type viral functions to prevent productive replication. We discuss this model in relation to existing systems and its potential as a simple tool to study the molecular mechanisms of quiescent infection in human cells using wild-type HSV-1.  相似文献   

5.
Very early in infection, herpes simplex virus (HSV) expresses four immediate-early (IE) regulatory proteins, ICP4, ICP0, ICP22, and ICP27. The systematic inactivation of sets of the IE proteins in cis, and the subsequent phenotypic analysis of the resulting mutants, should provide insights into how these proteins function in the HSV life cycle and also into the specific macromolecular events that are altered or perturbed in cells infected with virus strains blocked very early in infection. This approach may also provide a rational basis to assess the efficacy and safety of HSV mutants for use in gene transfer experiments. In this study, we generated and examined the phenotype of an HSV mutant simultaneously mutated in the ICP4, ICP27, and ICP22 genes of HSV. Unlike mutants deficient in ICP4 (d120), ICP4 and ICP27 (d92), and ICP4 and ICP22 (d96), mutants defective in ICP4, ICP27, and ICP22 (d95) were visually much less toxic to Vero and human embryonic lung cells. Cells infected with d95 at a multiplicity of infection of 10 PFU per cell retained a relatively normal morphology and expressed genes from the viral and cellular genomes for at least 3 days postinfection. The other mutant backgrounds were too toxic to allow examination of gene expression past 1 day postinfection. However, when cell survival was measured by the capacity of the infected cells to form colonies, d95 inhibited colony formation similarly to d92. This apparent paradox was reconciled by the observation that host cell DNA synthesis was inhibited in cells infected with d120, d92, d96, and d95. In addition, all of the mutants exhibited pronounced and distinctive alterations in nuclear morphology, as determined by electron microscopy. The appearance of d95-infected cells deviated from that of uninfected cells in that large circular structures formed in the nucleus. d95-infected cells abundantly expressed ICP0, which accumulated in fine punctate structures in the nucleus at early times postinfection and coalesced or grew to the large circular objects that were revealed by electron microscopy. Therefore, while the abundant accumulation of ICPO in the absence of ICP4, ICP22, and ICP27 may allow for prolonged gene expression, cell survival is impaired, in part, as a result of the inhibition of cellular DNA synthesis.  相似文献   

6.
7.
The expression of herpes simplex virus (HSV) genomes in the absence of viral regulatory proteins in sensory neurons is poorly understood. Previously, our group reported an HSV immediate early (IE) mutant (d109) unable to express any of the five IE genes and encoding a model human cytomegalovirus immediate early promoter-green fluorescent protein (GFP) transgene. In cultured cells, GFP expressed from this mutant was observed in only a subset of infected cells. The subset exhibited cell type dependence, as the fractions of GFP-expressing cells varied widely among the cell types examined. Herein, we characterize this mutant in murine embryonic trigeminal ganglion (TG) cultures. We found that d109 was nontoxic to neural cultures and persisted in the cultures throughout their life spans. Unlike with some of the cultured cell lines and strains, expression of the GFP transgene was observed in a surprisingly large subset of neurons. However, very few nonneuronal cells expressed GFP. The abilities of ICP0 and an inhibitor of histone deacetylase, trichostatin A (TSA), to activate GFP expression from nonexpressing cells were also compared. The provision of ICP0 by infection with d105 reactivated quiescent genomes in nearly every cell, whereas reactivation by TSA was much more limited and restricted to the previously nonexpressing neurons. Moreover, we found that d109, which does not express ICP0, consistently reactivated HSV type 1 (KOS) in latently infected adult TG cultures. These results suggest that the state of persisting HSV genomes in some TG neurons may be more dynamic and more easily activated than has been observed with nonneuronal cells.  相似文献   

8.
9.
10.
11.
Herpes simplex virus (HSV) entry requires host cell 26S proteasomal degradation activity at a postpenetration step. When expressed in the infected cell, the HSV immediate-early protein ICP0 has E3 ubiquitin ligase activity and interacts with the proteasome. The cell is first exposed to ICP0 during viral entry, since ICP0 is a component of the inner tegument layer of the virion. The function of tegument ICP0 is unknown. Deletion of ICP0 or mutations in the N-terminal RING finger domain of ICP0 results in the absence of ICP0 from the tegument. We show here that these mutations negatively influenced the targeting of incoming capsids to the nucleus. Inhibitors of the chymotrypsin-like activity of the proteasome the blocked entry of virions containing tegument ICP0, including ICP0 mutants that are defective in USP7 binding. However, ICP0-deficient virions were not blocked by proteasomal inhibitors and entered cells via a proteasome-independent mechanism. ICP0 appeared to play a postpenetration role in cells that supported either endocytosis or nonendosomal entry pathways for HSV. The results suggest that ICP0 mutant virions are defective upstream of viral gene expression at a pre-immediate-early step in infection. We propose that proteasome-mediated degradation of a virion or host protein is regulated by ICP0 to allow efficient delivery of entering HSV capsids to the nuclear periphery.  相似文献   

12.
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10ΔPK). ICP10ΔPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10ΔPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10ΔPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.  相似文献   

13.
14.
15.
We compared the levels of gene expression obtained after herpes simplex virus (HSV) superinfection of cell lines containing integrated human beta-interferon (IFN) or chloramphenicol acetyltransferase (CAT) genes under the control of HSV immediate-early (IE) or delayed-early class promoters. DNA-transfected mouse Ltk+ cell lines harboring coselected IE175-IFN or thymidine kinase (TK)-IFN hybrid genes gave only low basal expression of human IFN. However, infection of both cell types with HSV type 1 or HSV type 2 produced abundant synthesis of IFN-specific RNA and biologically active IFN protein product. The IE175-IFN cell lines consistently gave 20- to 150-fold increases in IFN titers, and several TK-IFN cell lines yielded 100- to 500-fold induction. In the IE175-IFN cells, expression of IFN RNA also increased up to 200-fold and was detectable within 30 to 60 min after virus infection. Qualitatively similar results were obtained with hybrid G418-resistant Ltk- or Vero cell lines containing coselected IE175-CAT and TK-CAT constructs, except that there was relatively high basal expression of IE175-CAT. All three sets of IE cell lines (but not the delayed-early cell lines) responded to virus infection both in the presence of cycloheximide and with mutants defective in IE gene expression, demonstrating specific trans-activation by the pre-IE virion factor. In contrast, activation in the TK hybrid cell types required viral gene expression and the presence of a functional IE175 gene product. Up to 30-fold amplification in the copy number of the resident IFN or CAT DNA sequences also occurred within 20 h after HSV infection in IE175 hybrid cells but not in TK hybrid cells. Amplification was abolished either by treatment with phosphonacetate or by superinfection with a ts mutant unable to synthesize viral DNA, demonstrating specific HSV activation of the viral DNA replication origin (oriS) present in the IE hybrid constructs.  相似文献   

16.
Herpes simplex virus (HSV) has often been suggested for development as a vector, particularly for the nervous system. Considerable evidence has shown that for use of HSV as a vector, immediate-early (IE) gene expression must be minimized or abolished, otherwise such vectors are likely to be highly cytotoxic. Mutations of vmw65 which abolish IE promoter transactivating activity may also be included to reduce IE gene expression generally. However, when vmw65 mutations are combined with an IE gene deletion, such viruses are hard to propagate, even on cells which otherwise complement the IE gene deletion effectively. We have found that vmw65 mutants can be effectively grown on cell lines expressing equine herpesvirus 1 gene 12, a non-HSV homologue of vmw65 with little sequence similarity to its HSV counterpart. This prevents repair by homologous recombination of vmw65 mutations in the virus, which would occur if mutations were complemented by vmw65 itself. The gene 12 protein is not packaged into HSV virions, which is important if viruses grown on such cells are to be used as vectors. These results not only further strengthen the evidence for direct functional homology between and similar modes of action of the two proteins but have allowed the generation of gene 12-containing cell lines in which ICP4 and ICP27 expression is induced by virus infection (probably by ICP0) and which give efficient growth of viruses deficient in ICP27, ICP4, and vmw65 (the viruses also have ICP34.5/ORFP deleted). Efficient growth of such viruses has not previously been possible. As these viruses are highly deficient in IE gene expression generally, such virus-cell line combinations may provide an alternative to HSV vectors with deletions of all four of the regulatory IE genes which, for optimal growth, require cell lines containing all four IE genes but which are hard to generate due to the intrinsic cytotoxicity of each of the proteins.  相似文献   

17.
M Gao  D M Knipe 《Journal of virology》1991,65(5):2666-2675
We have identified a trans-dominant mutant form of the herpes simplex virus (HSV) DNA-binding protein ICP8 which inhibits viral replication. When expressed by the V2.6 cell line, the mutant gene product inhibited wild-type HSV production by 50- to 150-fold when the multiplicity of infection was less than 5. Production of HSV types 1 and 2 but not production of pseudorabies virus was inhibited in V2.6 cells. The inhibitory effect was not due solely to the high levels of expression, because the levels of expression were comparable to those in the permissive wild-type ICP8-expressing S-2 cell line. Experiments designed to define the block in viral production in V2.6 cells demonstrated (i) that viral alpha and beta gene expression was comparable in the different cell lines, (ii) that viral DNA replication proceeded but was reduced to approximately 20% of the control cell level, and (iii) that late gene expression was similar to that in cells in which viral DNA replication was completely blocked. Genetic experiments indicated that the mutant gene product inhibits normal functions of ICP8. Thus, ICP8 may play distinct roles in replication of viral DNA and in stimulation of late gene expression. The dual roles of ICP8 in these two processes could provide a mechanism for controlling the transition from viral DNA synthesis to late gene expression during the viral growth cycle.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) mutants defective in immediate-early (IE) gene expression do not readily enter productive replication after infection of tissue culture cells. Instead, their genomes are retained in a quiescent, nonreplicating state in which the production of viral gene products cannot be detected. To investigate the block to virus replication, we used the HSV-1 triple mutant in1820K, which, under appropriate conditions, is effectively devoid of the transactivators VP16 (a virion protein), ICP0, and ICP4 (both IE proteins). Promoters for the HSV-1 IE ICP0 gene or the human cytomegalovirus (HCMV) major IE gene, cloned upstream of the Escherichia coli lacZ coding sequences, were introduced into the in1820K genome. The regulation of these promoters and of the endogenous HSV-1 IE promoters was investigated upon conversion of the virus to a quiescent state. Within 24 h of infection, the ICP0 promoter became much less sensitive to transactivation by VP16 whereas the same element, when used to transform Vero cells, retained its responsiveness. The HCMV IE promoter, which is not activated by VP16, also became less sensitive to the HCMV functional homolog of VP16. Both elements remained available for transactivation by HSV-1 IE proteins at 24 h postinfection, showing that the in1820K genome was not irreversibly inactivated. The promoters controlling the HSV-1 ICP4, ICP22, and ICP27 genes also became essentially unresponsive to transactivation by VP16. The ICP0 promoter was induced when hexamethylene bisacetamide was added to cultures at the time of infection, but the response to this agent was also lost by 24 h after infection. Therefore, promoter elements within the HSV-1 genome are actively repressed in the absence of IE gene expression, and repression is not restricted specifically to HSV-1 IE promoters.  相似文献   

19.
The herpes simplex virus mutants KOS1.1 ts756 and HFEM tsLB2 express temperature-sensitive ICP4 proteins that are not localized properly to the cell nucleus at the nonpermissive temperature. In these infected cells at the nonpermissive temperature, nuclear localization of at least two other viral proteins, ICP0 and ICP8, is impaired. Replacement of the mutated sequences in the ICP4 gene of tsLB2 restored proper nuclear localization of all of the proteins. The ICP0 and ICP8 proteins expressed in cells transfected with their individual genes were localized to the cell nucleus. Therefore, in infected cells, the mutant ICP4 gene product appears to be the primary defect which leads to the block in nuclear localization of the other proteins. One viral protein, ICP27, was not inhibited for nuclear localization in these cells. These data indicate that there are at least two pathways for nuclear localization of HSV proteins, one of which is inhibited by the mutant ICP4 protein. The mutant ICP4 protein may define a probe for one of the pathways of nuclear localization of proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号