首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The titration behavior of individual tyrosine residues of myoglobins has been studied by observing the pH dependence of the chemical shifts of Czeta and Cgamma of these residues in natural abundance of 13C Fourier transform NMR spectra (at 15.18 MHz, in 20-mm sample tubes, at 37 degrees) of cyanoferrimyoglobins from sperm whale, horse, and red kangaroo. A comparison of the pH dependence of the spectra of the three proteins yielded specific assignments for the resonance of Tyr-151 (sperm whale) and Tyr-103 (sperm whale and horse). Selective proton decoupling yielded specific assignments for Czeta of Tyr-146 of the cyanoferrimyoglobins from horse and kangaroo, but not the corresponding assignment for sperm whale. The pH dependence of the chemical shifts indicated that only Tyr-151 and Tyr-103 are titratable tyrosine residues. Even at pH 12, Tyr-146 did not begin to titrate. The titration behavior of C zeta and Cgamma of Tyr-151 of sperm whale cyanoferrimyoglobin yielded a single pK value of 10.6. The pH dependence of the chemical shift of each of the resonances of Tyr-103 of the cyanoferrimyoglobins from horse and sperm whale could not be fitted with the use of a single pK value, but was consistent with two pK values (about 9.8 and 11.6). Furthermore, the resonances of Czeta and Cgamma of Tyr-103 broadened at high pH. The titration behavior of the tyrosines of sperm whale carbon monoxide myoglobin and horse ferrimyoglobin was also examined. A comparison of all the experimental results indicated that Tyr-151 is exposed to solvent, Tyr-146 is not exposed, and Tyr-103 exhibits intermediate behavior. These results for myoglobins in solution are consistent with expectations based on the crystal structure.  相似文献   

2.
Myoglobin(IV), the derivative of myoglobin at the formal oxidation state IV, prepared from kangaroo (Megaleia rufa), horse, or sperm whale myoglobin, when cooled to liquid nitrogen temperature, assumes acid and alkaline forms with different optical spectra. The essential features of the optical spectra of the acid forms are the same as those of leghemoglobin(IV) and are very similar to those of optical spectra of the red higher oxidation states of catalases and peroxidases. This shows that the configuration of the heme iron is the same throughout these compounds. That configuration is believed to be Fe(IV) in a porphyrin environment. The optical spectra of alkaline mammalian myoglobin(IV), like that of alkaline leghemoglobin(IV), resemble those of the alkaline low spin ferric proteins. Kangaroo myoglobin(IV) may be prepared by reaction of ferrous myoglobin with hydrogen peroxide. The acid forms of myoglobin(IV) are conveniently prepared by cooling solutions in borate buffers, initially pH 8.3, to liquid nitrogen temperature. At this temperature borate buffers become acidic.  相似文献   

3.
Four titrating histidine ring C2 and C4 proton resonances are observed in 220 MHz proton NMR spectra of human metmyoglobin as a function of pH. Values of ionization constants determined from the NMR titration data using an equation describing a simple proton association-dissociation equilibrium are curves (1) 6.6, (2) 7.0, (3) 5.8, and (4) 7.4. Four histidine residues have also been found to be solvent-accessible in human metmyoglobin by carboxymethylation studies (Harris, C.M., and Hill, R.L. (1969) J. Biol. Chem. 244, 2195-2203). Two of the titration curves (3 and 4) deviate significantly from the chemical shift values normally observed for histidine C2 proton resonances. Curve 3, with a low pKa, is shifted downfield at high values of pH and also exhibits a second minor inflection with a pKa value of 8.8. On the other hand, the high pKa curve, 4, is shifted upfield at all values of pH. The characteristics of the NMR titration curves with the lowest and highest pKa values (3 and4) are very similar to curves observed previously with sperm whale and horse metmyoglobins (Cohen, J.S., Hagenmaier, H., Pollard, H., and Schechter, A.N. (1972) J. Mol. Biol. 71, 513-519). These results indicate that the histidine residues from which these curves are derived have unusual and characteristic environments in this series of homologous proteins. The NMR spectra of all three metmyoglobins are changed extensively as a result of azide ion binding, indicating conformational changes affecting the environments of several imidazole side chains. The presence of azide ion causes a selective downfield chemical shift for the low pKa curve and a selective upfield chemical shift for the high pKa curve in all three proteins. Azide also abolishes the second inflection seen in the low pKa curve at high pH. In addition to these effects, the presence of azide ion permits the observation of two additional titrating proton resonances for all three metmyoglobins. Increasing the azide to protein ratio at several fixed values of pH yields results which show that a slow exchange process is occurring with each of the metmyoglobins. In the azide titration studies the maximum changes in the NMR spectra occurred at approximately equimolar concentrations. The NMR results for these proteins in the absence and presence of azide ion are related to x-ray crystallographic studies of sperm whale metmyoglobin and the known alkylation properties of the histidine residues. Tentative assignments of the titrating resonances observed are suggested.  相似文献   

4.
The influence of Cu2+ concentration, pH, and ionic strength of the solution as well as redox-inactive zinc ions on the rate of oxidation of sperm whale, horse, and pig oxymyoglobins (oxy-Mb) by copper ions has been studied. These myoglobins have homologous spatial structures and equal redox potentials but differ in the number of histidines located on the surface of the proteins. It was shown that oxy-Mb can be oxidized in the presence of Cu2+ through two distinct pathways depending on which histidine binds the reagent and how stable the complex is. A slow pH-dependent catalytic process is observed in the presence of equimolar Cu2+ concentration for sperm whale and horse oxymyoglobins. The curves of pH dependence in both cases are sigmoid with pK eff corresponding to the ionization. The process is caused by the strong binding of Cu2+ to His113 and His116, an analogous His residue being absent in pig Mb. In contrast, rapid oxidation of 10-15% of pig oxy-Mb is observed under the same conditions (fast phase), which is not accompanied by catalysis because the reduced copper is apparently not reoxidized. The complexing of Cu2+ with His97 situated near the heme is probably responsible for the fast phase of the reaction. The affinity of His97 for Cu2+ must be significantly lower than those of the catalytic His residues since the fast phase does not contribute markedly to the rate of sperm whale and horse oxy-Mb oxidation. Increasing copper concentration does not produce a proportional growth in the oxidation rate of sperm whale and horse oxy-Mbs. Which Cu2+ binding sites of Mb make main contributions to the His reaction rate at different Cu2+/Mb ratios from 0.25 to 10 is discussed.  相似文献   

5.
The work in the literature on apomyoglobin is almost equally divided between horse and sperm whale myoglobins. The two proteins share high homology, show similar folding behavior, and it is often assumed that all folding phenomena found with one protein will also be found with the other. We report data at equilibrium showing that horse myoglobin was 2.1 kcal/mol less stable than sperm whale myoglobin at pH 5.0, and aggregated at high concentrations as measured by gel filtration and analytical ultracentrifugation experiments. The higher stability of sperm whale myoglobin was identified for both apo and holo forms, and was independent of pH from 5 to 8 and of the presence of sodium chloride. We also show that the substitution of sperm whale myoglobin residues Ala15 and Ala74 to Gly, the residues found at positions 15 and 74 in horse myoglobin, decreased the stability by 1.0 kcal/mol, indicating that helix propensity is an important component of the explanation for the difference in stability between the two proteins.  相似文献   

6.
A preliminary residue by residue comparison of the conformations of the seal and sperm whale metmyoglobin molecules is reported. Data for the comparison were the atomic co-ordinates of all non-hydrogen atoms common to both structures 1184 equivalent pairs of atoms in all.The results of the comparison, though preliminary, indicate how the differences between the primary structures of the two molecules lead to the differences between their crystal structures and affect their interaction with ligands.  相似文献   

7.
8.
The influence of pH, ionic strength of the solution, and [Fe(CN)6]4- concentration on the rate of oxidation of sperm whale, horse, and pig oxymyoglobins, which is catalyzed by ferrocyanide ions, was studied. These myoglobins have homologous spatial structures and identical redox potentials but differ by the amount of His residues located on the protein surface. The effect of the MbO2 complexing with redox-inactive Zn2+ ion on the reaction rate was also examined. At the equimolar Zn2+ concentration, zinc ions form a stable complex with His119(GH1). It was found that the kinetic behavior of horse MbO2, which lacks His12(A10) substituted for by Gln, is fully analogous to one of sperm whale MbO2, while the oxidation of pig MbO2, three histidines of which, His12, His113(G14), and His116(G17), are replaced by Gln, is strongly inhibited. The mechanism of the catalysis was shown to involve specific binding of [Fe(CN)6]4- to the protein at the His119(GH1) site, which is in accord with the large positive electrostatic potential of this site and the presence here of a cavity large enough to accommodate [Fe(CN)6]4-. The nearby His113 and His116 residiues, which are absent in pig Mb, also play a very important role in the catalysis, because their protonation (especially of the last residue) is most likely responsible for the week oxidation of bound [Fe(CN)6]4- by dissolved oxygen.  相似文献   

9.
10.
11.
R D Hershberg  B Chance 《Biochemistry》1975,14(17):3885-3891
The binding of formate ion, a substrate for the peroxidatic reaction of catalase, has been investigated by magnetic resonance techniques. Comparative studies of formate binding to ferric myoglobin have also been performed. The nuclear magnetic relaxation (NMR) rate of formate and water protons is enhanced by the presence of ferric horse liver catalase. The enhancement is not changed significantly by the addition of cyanide, indicating that water and formate are still bound in the presence of cyanide. Formate proton to heme iron distances determined by magnetic resonance techniques indicate that formate does not directly bind to the heme iron of catalase or myoglobin but to the globin, and NMR relaxation occurs as a result of outersphere mechanisms. Evidence that water forms an innersphere complex with the iron atom of the catalase heme is presented. In similar experiments with ferric myoglobin, the addition of cyanide caused a large decrease in the enhancement of the proton relaxation rate of both formate and water, indicating the displacement of water and formate from the heme and the vicinity of the heme, respectively. Broad, high-spin, ferric ion electron paramagnetic resonance absorptions of catalase and myoglobin at room temperature obtained in the presence and absence of formate show that formate does not alter appreciably the heme environment of catalase or myoglobin or the spin state of the heme iron. Studies on the binding of formate to catalase as monitored by changes in the heme absorption spectrum in the visible region show one-to-one stoichiometry with heme concentration. However, the small changes observed in the visible region of the optical spectrum on addition of formate ion are attributed to a secondary effect of formate on the heme environment, rather than direct binding of formate to the heme moiety.  相似文献   

12.
13.
1H-NMR spectra of deoxy myoglobins (Mbs) from shark (Galeorhinus japonicus), horse, and sperm whale have been studied to gain insights into their active site structure. It has been demonstrated for the first time that nuclear Overhauser effect (NOE) can be observed between heme peripheral side-chain proton resonances of these paramagnetic complexes. Val-E11 methyl and His-F8 C delta H proton resonances of these Mbs were also assigned from the characteristic shift and line width. The hyperfine shift of the former resonance was used to calculate the magnetic anisotropy of the protein. The shift analysis of the latter resonance, together with the previously assigned His-F8 N delta H proton resonance, revealed that the strain on the Fe-N epsilon bond is in the order horse Mb approximately whale Mb < shark Mb and that the hydrogen bond strength of the His-F8 N delta H proton to the main-chain carbonyl oxygen in the preceding turn of the F helix is in the order shark Mb < horse Mb < whale Mb. Weaker Feporphyrin interaction in shark Mb was manifested in a smaller shift of the heme methyl proton resonance and appears to result from distortion of the coordination geometry in this Mb. Larger strain on the Fe-N epsilon bond in shark Mb should be to some extent attributed to its lowered O2 affinity (P50 = 1.1 mmHg at 20 degrees C), compared to whale and horse Mbs.  相似文献   

14.
15.
16.
We have studied the effect of Ruthenium red on the sarcoplasmic reticulum Ca(2+)-ATPase. Ruthenium red does not modify the Ca2+ pumping activity of the enzyme, despite its interaction with cationic binding sites on sarcoplasmic reticulum vesicles. Two pools of binding sites were distinguished. One pool (10 nmol/mg) is dependent upon the presence of micromolar Ca2+ and may therefore represent the high-affinity Ca2+ transport sites of the Ca(2+)-ATPase. However, Ruthenium red only slightly competes with Ca2+ on these sites. The other pool (15-17 nmol/mg) is characterized as low-affinity cation binding sites of sarcoplasmic reticulum, distinct from the Mg2+ site involved in the ATP binding to the Ca(2+)-ATPase. The interaction of Ruthenium red with these low-affinity cation binding sites, which may be located either on the Ca(2+)-ATPase or on surrounding lipids, decreases tryptophan fluorescence level of the protein. As much as 25% of the tryptophan fluorescence of the Ca(2+)-ATPase is quenched by Ruthenium red (with a dissociation constant of 100 nM), tryptophan residues located near the bilayer being preferentially affected.  相似文献   

17.
A kinetic description of ligand binding to sperm whale myoglobin   总被引:2,自引:0,他引:2  
Nanosecond recombination time courses were measured by photolyzing O2, NO, CO, methyl, ethyl, n-propyl, n-butyl, and tert-butyl isocyanide complexes of sperm whale myoglobin with a 30-ns laser pulse at pH 7, 20 degrees C. Absorbance was measured both during and after the excitation pulse and as a function of laser light intensity. The results were analyzed quantitatively in terms of a three-step reaction scheme, MbX in equilibrium B in equilibrium C in equilibrium Mb + X, where Mb is myoglobin, B represents a geminate state in which the ligand is present in the distal pocket but not covalently bound to the iron atom, and C, a state in which the ligand is still embedded in the protein but further away from the heme group. The fitted rate parameters were required to be consistent with the observed overall quantum yield, Q, which had been measured independently using much longer (approximately 0.5 ms) xenon flash pulses. Three major conclusions were derived from these analyses. First, the overall quantum yield of the ligand complex is determined primarily by the competition between the rate of iron-ligand bond formation from the initial photoproduct, kB----MbX, and the rate of migration away from state B, kB----C. For example, kB----C approximately equal to 30-100 microseconds-1 for all three gaseous ligands, whereas both Q and kB----MbX vary over 3 orders of magnitude (i.e. NO, Q = 0.001, kB----MbX approximately equal to 16,000 microseconds-1; O2, Q = 0.1, kB----MbX approximately equal to 500 microseconds-1; CO, Q = 1.0, kB----MbX approximately equal to 2 microseconds-1). Second, for NO, O2, and the isonitriles, the rate-limiting step in the overall association reaction starting from ligand in solution is the formation of state B. The rate constant for this process varies from 2 X 10(7) M-1 s-1 for the gaseous ligands to 0.02-1.4 X 10(5) M-1 s-1 for the isonitriles. In contrast, the B to MbX transition is limiting for CO binding. Third, for all the ligands except CO, the overall rate of dissociation is limited significantly both by the rate of thermal bond disruption, kMbX----B, and the competition between geminate recombination and migration away from the distal pocket (i.e. kB----C/(kB----MbX + kB----C]. In the case of CO, the rate of bond disruption is equal to the observed dissociation rate constant.  相似文献   

18.
19.
Fluorescence studies of Aplysia and sperm whale apomyoglobins   总被引:2,自引:0,他引:2  
S R Anderson  M Brunori  G Weber 《Biochemistry》1970,9(24):4723-4729
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号