首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Production of Bacillus thuringiensis (Bt) based bioinsecticide was studied by using starch processing wastewater (SPW) as a raw material. Results indicated that the nutrients contained in SPW were sufficient for growth, sporulation and δ-endotoxin production of Bacillus thuringiensis subsp. kurstaki (Btk). The final cell counts and spore counts achieved in SPW medium were 72% and 107% respectively higher than those in the soybean meal based commercial medium. Higher δ-endotoxin yield of 2.67 mg mL−1 and higher entomotoxicity of 1,050 IU μL−1 were also obtained in SPW medium as compared with the commercial medium at the end of fermentation. The morphological observations also revealed that the fermentation cycle of Btk could be shortened in this new medium. This process provides solutions for safe SPW disposal and production of high potency and low cost bioinsecticide.  相似文献   

2.
In shake flask and fermentor studies, various media components and culture inocula were tested to improve P. fumosoroseus spore production rates, yield and stability. To evaluate inoculum potential and inoculum scale-up for fermentor studies, conidia and liquid culture-produced spores of various strains of P. fumosoroseus were compared as inoculum. Inoculation of liquid cultures with blastospores at concentrations of at least 1×106 spores mL-1 resulted in the rapid production of high concentrations of blastospores (∼1×109 spores mL-1, 48 h fermentation time) for all strains tested. The rapid germination rate of blastospores (90% after 6 h incubation) compared to conidia (>90% after 16 h incubation) and the use of higher inoculum rates reduced the fermentation time from 96 to 48 h for maximal spore yields. A comparison of various complex nitrogen sources showed that liquid media supplemented with acid hydrolyzed casein or yeast extract supported the production of high concentrations of blastospores that were significantly more desiccation-tolerant (79-82% survival after drying) when compared to blastospores produced in media supplemented with other nitrogen sources (12-50% survival after drying). For rapid spore production, requirements for trace metals and vitamin supplementation were dependent on the type of hydrolyzed casein used in the medium. Fermentor studies with two strains of P. fumosoroseus showed that high concentrations (1.3-1.8×109 spores mL-1) of desiccation-tolerant blastospores could be produced in 48-h fermentations. These studies have demonstrated that the infective spores of various strains of the fungal bioinsecticide Paecilomyces fumosoroseus can be rapidly produced using deep-tank, liquid culture fermentation techniques.  相似文献   

3.
The growth kinetics, sporulation, and toxicity of Bacillus thuringiensis var. israelensis were evaluated through the analysis of batch cultures with different dissolved oxygen (DO) profiles. Firstly, DO was maintained constant at 5%, 20%, or 50% throughout fermentation in order to identify the most suitable one to improve the main process parameters. Higher biomass concentration, cell productivity, and cell yield based on glucose were obtained with 50% DO. The higher aeration level also resulted in higher spore counts and markedly improved the toxic activity of the fermentation broth, which was 9-fold greater than that obtained with 5% DO (LC50 of 39 and 329 mg/L, respectively). Subsequently, using a two-stage oxygen supply strategy, DO was kept at 50% during the vegetative and transition phases until the maximum cell concentration was achieved. Then, DO was changed to 0%, 5%, 20%, or 100% throughout sporulation and cell lysis phases. The interruption of oxygen supply strongly reduced the spore production and thoroughly repressed the toxin synthesis. On the contrary, when DO was raised to 100% of saturation, toxic activity increased approximately four times (LC50 of 8.2 mg/L) in comparison with the mean values reached with lower DO levels, even though spore counts were lower than that from the 50% DO assay. When pure oxygen was used instead of normal air, it was possible to obtain 70% of the total biomass concentration achieved in the air assays; however, cultures did not sporulate and the toxin synthesis was consequently suppressed.  相似文献   

4.
Summary Beauveria bassiana in liquid culture can produce blastospores and occasionally submerged conidia. For use as a bioinsecticide, conidia have definite advantages. Numerous studies have investigated conidia production in liquid cultures using synthetic and industrial grade media supplemented with glucose. We have studied growth, development and sporulation in microcultures using growth media containing chitin monomers. For the production of submerged conidia growth media containing N-acetyl-d-glucosamine (GlcNAc) proved to be better than yeast extract-peptone-glucose (YPG), glucose plus ammonium salts (Glc+NH4Cl) or N-acetyl-d-galactosamine (GalNAc). Sixty-one percent of the spores in the GlcNAc medium were submerged conidia with the remainder being blastospores. The concentration of submerged conidia reached 8.0 × 105/ ml after two days in GlcNAc medium as compared to 8.9 × 105/ml in YPG medium. Therefore, in terms of percentage of submerged conidia produced, GlcNAc medium generated more submerged conidia in spite of its lower cell yields. Growth in a medium containing chitin, a polymer of GlcNAc, resulted in 86.3% of the spores as submerged conidia exceeding 106/ml after 48 h. Growth under phosphate limitation resulted in an increased percentage of submerged conidia for all media tested. Electron microscopy and spore protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that structural and compositional differences exist between the spore types.  相似文献   

5.
The effect of spore inoculum density, medium concentration, and temperature on slime-spot formation, spore yield, and mycelium production by Colletotrichum gloeosporioides on agar media were studied with a simple microplate assay. A steady-state spore yield (spore-carrying capacity) independent of inoculum density was reached only on media that supported good fungal growth and sporulation. The spore-carrying capacity was reached earlier, the denser the inoculum. On standard mycological media a high inoculum density (2.5 × 106 spores per ml) resulted in a slimy mass of conidia forming a slime spot, a phenomenon associated with greatly reduced mycelium formation and indicative of microcycle conidiation. In contrast, for a similar inoculum density, enhanced mycelial growth preceded sporulation and overrode slime-spot formation on highly concentrated media; a very low medium concentration resulted in much less mycelium, but spore production was also decreased. Exposure to suboptimal growth temperatures of 36 to 48°C for up to 8 days did not induce microcycle conidiation from inocula that did not form a slime spot at 28°C.  相似文献   

6.
ABSTRACT

In this study, we optimised the conditions for the production of micropropagules of Trichoderma harzianum EGE-K38 in static liquid culture in Modified Czapec Medium (MCM) containing 8?g/L glucose in an integrated tray bioreactor system designed by our research group. Incubation temperature, air flow rate, inoculum spore concentration, inoculation size, medium volume and the use of spores or agar plugs containing mycelia as inoculum were individually studied as one factor at a time. The maximum micropropagule count was 5.2?±?0.2?×?109?cfu/mL and dry cell weight was 17?±?2?g/L. For the subsequent drying processes, the maximum drying yield percentage ((viable micropropagule counts after drying/viable cells before drying)*100) after drying of micropropagules was 23.30% (cfu/cfu). Results obtained from our integrated tray bioreactor system showed that static liquid culture fermentation offers potential for industrial scale fungal BCAs production.  相似文献   

7.
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.  相似文献   

8.
【背景】尖孢镰孢(Fusariumoxysporum)引起的烟草根腐病在世界烟区普遍发生,严重影响烟草产量和质量,化学农药无法有效防治病害,利用生防菌防治该病成为研究热点。【目的】明确贝莱斯芽孢杆菌(Bacillusvelenzensis)GDND-2对尖孢镰孢生长发育的抑制作用。【方法】制备含10%和20%GDND-2发酵滤液的PDA培养基,涂在玻片上,接种尖孢镰孢分生孢子,观察滤液对尖孢镰孢孢子萌发、菌丝生长、孢子形成和色素产生的影响,应用扫描和透射电镜观察菌体超微结构的变化。【结果】贝莱斯芽孢杆菌GDND-2发酵滤液延迟孢子萌发2h以上,造成芽管膨大畸形,促使菌丝提早分枝,抑制菌丝延伸,使菌丝产生畸形球状结构,10%和20%发酵滤液对菌丝生长抑制率达53.41%和61.58%。滤液延迟病菌产孢,显著抑制产孢量,影响孢子形态,刺激病菌产生色素。10%和20%发酵滤液延迟产孢20h和28h,对产孢量的抑制率为52.11%和78.85%,滤液促使病菌形成小型分生孢子。观察尖孢镰孢的超微结构,部分菌丝膨大、畸形,细胞壁变薄,细胞膜消失,细胞质渗出,胞内呈空腔结构;部分菌丝严重皱缩、扭曲、...  相似文献   

9.
In an attempt to develop a cost-effective process for bioinsecticide production by B. thuringiensis, the feeding regime during aerobic cultivation of the bacterium was investigated and optimized. The process was designed as a two-stage process; a first stage of active growth, where glucose and other nutrients were adequately supplied to the growing cells over 12 h, followed by a second stage of 2 h for spore formation and toxin release. In order to maximize spore and toxin yield and productivity, different quantities of glucose and nutrients were fed separately to the growing cells in four different fermentation runs. In all runs, glucose was converted to bacterial biomass during the first stage and subsequently to spores and crystal protein during the second phase. The best results were obtained with a fermentation run supplied with 190 g glucose in 1500 ml. Up to 20.1 g of bacterial insecticides/l were recovered from fermentation broth with a glucose to toxin conversion yield of 0.159 g/g. Also, a markedly high spore concentration of 2.31 × 1012 c.f.u./ml was obtained. The spore–crystal protein mixture obtained was tested for its insecticidal activity against three of the most agronomically important pests. Among the bioinsecticide-treated insect pests, Egyptian cotton leafworm, Spodoptera littoralis was the most susceptible pest with the lowest LC50 of the bioinsecticides against its larval instar and the highest virulence against adults emerged later on from the surviving larvae.  相似文献   

10.
The production of biological indicators involving bacterial sporulation and multi-step downstream processes has been described. The goal of the present work was to use fermented material as the final product in a biological indicator, thereby reducing processing steps and costs. The performance of three different inexpensive supports (vermiculite, sand, and sugarcane bagasse) was assessed by determining Bacillus atrophaeus sporulation during solid-state fermentation and by assessing the direct use of the fermentation products in the subsequent steps of the process. All three supports allowed spore production of between 107 and 109 CFU g−1. Sand proved to be the best inert support enabling the direct use of the fermented product due to its easy homogenization, filling properties, and compatibility with recovery medium. Bacterial adhesion to the sand surface was supported by biofilm formation. The resistance to sterilization of the dried fermentation product was evaluated. For dry-heat resistance (160°C), the D value was 6.6 min, and for ethylene oxide resistance (650 mg/L), the D value was 6.5 min. The cost reduction of this process was at least 48%. No previous studies have been published on the application of sand as a support in solid-state fermentation for the production of biological indicators.  相似文献   

11.
For low-cost production of Photorhabdus temperata ssp. temperata strain K122 bioinsecticide, a cheap complex medium was optimized. Diluted seawater was used as the source of micronutrients, especially sodium chloride, involved in the improvement of cell density, culturability and oral toxicity of the bacterium P. temperata against Ephestia kuehniella larvae. Thus, the new formulated medium was composed only of 10 g/l of soya bean meal, used as the carbon and nitrogen main source, mixed in sevenfold diluted seawater. At such conditions, several limitations of P. temperata bioinsecticide productions were shown to be overcome. The appearance of variants small colony polymorphism was completely avoided. Thus, the strain K122 was maintained at the primary form even after prolonged incubation. Moreover, the viable but nonculturable state was partially overcome, since the ability of P. temperata cells to form colonies on the solid medium was prolonged until 78 h of incubation. In addition, when cultured in the complex medium, P. temperata cells were produced at high cell density of 12 × 108 cells/ml and exhibited 81.48% improvement of oral toxicity compared to those produced in the optimized medium. With such medium, the large-scale bioinsecticides production into 3-l fully controlled fermenter improved the total cell counts, CFU counts and oral toxicity by 20, 5.81 and 16.73%, respectively. This should contribute to a significant reduction of production cost of highly potent P. temperata strain K122 cells, useful as a bioinsecticide.  相似文献   

12.
Summary The effect of inoculum size and potassium hexacyanoferrate II-trihydrate, K4[Fe(CN)6]·3 H2O (KHCF), on pectinase synthesis by Aspergillus niger in submerged conditions were studied. Experiments were performed in shake flasks and in a 10-1 stirred bioreactor. Spore concentrations in the range 102–108 spores/1 of substrate were tested. Enzyme activity measured by the Apple Juice Depectinizing Assay (AJDA) showed the highest values using the smallest inoculum. Higher spore concentrations led to a 25% or even up to a 50% reduction of activity. Polygalacturonase (PG) activity decreased similarly to AJDA activity with higher inoculum concentration. Pectinlyase (PL) showed the opposite relationship, while pectin esterase (PE) did not show any correlation with inoculum concentration. Experiments in the fermentor using a reduced inoculum of 102 spores/1 showed that the whole process was prolonged in comparison to 108 spores/1 inoculum. A pronounced effect of KHCF on fungal morphology as well as on enzymatic activity was observed. With increased concentration the morphology gradually changed from loose pellets to smaller compact ones. The enzymatic activity was markedly improved. In the bioreactor the amount of biomass was reduced from about g/l to 8 g/l. The activities were improved in comparison to fermentations without KHCF as follows: AJDA from 68 to 112 units (U)/ml, viscosity reduction from 83% to 90%, PG from 0.8 to 3.3 U/ml, PE from 32 to 49 U/ml and PL from 0.05 to 0.12 U/ml. The fermentation time was reduced from 96 to 68 h. Offprint requests to: J. Friedrich  相似文献   

13.
A new two-phase kinetic model of sporulation of Clonostachys rosea in a new solid-state fermentation (SSF) reactor was proposed. The model including exponential and logistic models was applied to study the simultaneous effect of temperature, initial moisture content, medium thickness and surface porosity of the plastic membrane on C. rosea sporulation. The model fits experimental data very well and allows accurate predictions of spore production. The maximum spore production achieved 3.360 × 1010 (spores/gDM), about 10 times greater than that in traditional SSF reactor(data not shown). The new reactor can provide two times sporulation surface area. Moisture content can be adjusted by changing the surface porosity to meet the spore production. Two mixings carried out during fermentation makes medium loose and results in a mass of new sporulation surface area. Therefore, the new SSF reactor would have great potential for application in bulk spore production of fungal biocontrol agents.  相似文献   

14.
Bacillus megaterium accumulated 3-phosphoglycerate during sporulation which was utilized during spore germination. During sporulation a protein was synthesized before or at the start of 3-phosphoglycerate accumulation inside the developing spores about 1.5 h before dipicolinic acid accumulation. This protein has an affinity for Mn2+ and other divalent metal ions and inhibits phosphoglycerate mutase activity which has been shown to require Mn2+ However, the levels of the inhibitor decreased considerably (75–85%) during spore germination. No appreciable amount of the inhibitor was detected in the vegetable cell and mother cell compartment; however, the forespore compartment possesses an activity comparable to that of dormant spores. The partially purified inhibitor has a molecular weight of 11,000 and possesses both high and low affinity binding sites for Mn2+ and Ca2+ as determined by Scatchard plot analysis.  相似文献   

15.
Summary In this investigation, ammonium hydroxide and acetic acid were used as pH control agents during Bacillus thuringiensis (Bt) fermentation in a pilot scale fermentor (150-l) employing two secondary wastewater sludges from two different wastewater treatment plants (CUQS and JQS) and semi-synthetic soybean meal medium as raw materials. Regardless of the cultivation medium, a substantial increase in total cell count, spore count, protease activity and entomotoxicity was achieved when the pH of the culture was controlled using NH4OH/CH3COOH. At harvest, total cell count increased by almost 17%, 33% and 25%; protease activity was enhanced by 12%, 33% and 53% and maximal spore count augmented by almost 28%, 48% and 33% in CUQS, JQS and soybean medium, respectively. Entomotoxicity potency was improved by 22%, 21% and 14% in CUQS, JQS and soybean medium, respectively compared to results obtained with NaOH/H2SO4 as pH control agents. A higher entomotoxicity was also observed using sludge compared to the soybean medium. This improvement of the Bt process performance was a consequence of the addition of rapidly utilizable carbon and nitrogen source through pH control, which stimulated endotoxin production in the crystal and enhanced sporulation.  相似文献   

16.
The production of fungal spores using on-site, non-sterile, portable fermentation equipment is technically constrained. Very little information is available on the production requirements, such as medium concentration, inoculum stabilization, required fermentation times, and maintenance of axenic growth. In this study, we developed a two-part, liquid concentrate of the production medium that remains stable and soluble at room temperature. We also examined inoculum stability and showed that freeze- or air-dried blastospore preparations were stable for 7 days after rehydration when stored at 4 °C. The use of a low-pH (pH 4), relatively rich complex medium provided a growth environment deleterious to bacterial growth yet conducive to rapid sporulation by Paecilomyces fumosoroseus. High concentrations of blastospores (7.9×108/ml) of P. fumosoroseus were produced in a 40-h fermentation with very low levels of bacterial contamination when the fermentor was charged with a blastospore production medium with a starting pH of 4 and inoculated with blastospore concentrations greater than 1×106 spores/ml. These studies demonstrate that the use of disinfected, portable fermentation equipment has potential for on-site production of high concentrations of blastospores of the bioinsecticidal fungus P. fumosoroseus.  相似文献   

17.
The suitability of using a simple brewer's yeast extract (BYE), prepared by autolysis of complete beer slurry, for growth and sporulation of Bacillus thuringiensis kurstaki was studied in baffled shake flasks. In a standard buffered medium with 2.5% (w/v) glucose and 1% (w/v) brewer's yeast extract, growth of B. t. kurstaki resulted in a low biomass production with considerable byproduct formation, including organic acids and a concomitant low medium pH, incomplete glucose utilization and marginal sporulation, whereas growth in the same medium with a commercial laboratory-grade yeast extract (Difco) resulted in a high biomass concentration, complete glucose utilization, relatively low levels of byproducts and complete sporulation (2.6 × 109 spores/ml). When glucose was left out of the medium, however, growth parameters and sporulation were comparable for BYE and commercial yeast extract, but absolute biomass levels and spore counts were low. Iron was subsequently identified as a limiting factor in BYE. After addition of 3 mg iron sulphate/l, biomass formation in BYE-medium more than doubled, low byproduct formation was observed, and complete sporulation occurred (2.8 × 109spores/ml). These data were slightly lower than those obtained in media with commercial yeast extract (3.6 × 109spores/ml), which also benefited, but to a smaller extent, from addition of iron.  相似文献   

18.
A suitable medium was developed from modified Richard's medium plus V8 juice (RM8) to produce high levels of desiccation-tolerant conidia ofTrichoderma harzianumstrain 1295-22. The addition of 9% (v/v) glycerol to RM8 improved both biomass production and desiccation tolerance of the conidia ofT. harzianum.This medium was then used in a laboratory scale fermenter (1.5 liter) to determine optimal operating conditions. The optimal temperature for conidial production and desiccation tolerance improvement in the fermenter was 32°C when dissolved oxygen was maintained at 50% saturation of air, and the stirring rate was 1000 revolutions per minute. The initial water potential of the medium (with 9% glycerol) was −3.7 MPa, the pH was 6, and neither was controlled during fermentation. Changes in medium pH and dissolved oxygen were associated with the stages of morphological development and conidiation. The pH of the medium decreased concurrently with germ-tube elongation and mycelium development and then increased to 6.0–6.2 at phialide formation. Intensive conidiation occurred at pH 6.3–6.5 and reached its maximal level at 6.9–7.1. Changes in pH values could be used as indicators to monitor the morphological development and conidiation ofT. harzianumduring fermentation. The use of a 48-h-old culture inoculum, rather than conidial inoculum, to start fermentation reduced the time required to complete the shift from vegetative growth to phialide formation. Intensive conidiation occurred immediately after the addition of culture inoculum and reached maximum levels within 68 h of fermentation. Dry weight of biomass increased with the duration of fermentation and was greatest at 96 h. However, no improvements in conidia/gram and CFU/gram were achieved after 72 h of fermentation. The desiccation tolerance of conidia harvested at 72 or 96 h was significantly (P = 0.05) greater than that of conidia harvested at 48 h of fermentation. Results obtained from this study could be used for further scale-up of the fermentation process.  相似文献   

19.
Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation‐specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell‐ and developmental stage‐specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σH and σA, during sporulation. The results suggest that σH is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σA plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth.  相似文献   

20.

Optimization of a fermentation process for bioinsecticides production by Photorhabdus temperata strain K122 was investigated into fully controlled 3-L fermenter using an optimized medium (OM). Development of large-scale inocula showed that the composition of the growth medium greatly influenced the physiological state of P. temperata cells. The effect of pH, agitation and dissolved oxygen concentration (DO) on the growth, culturability and oral toxicity of P. temperata cells were also investigated. Indeed, maintaining the pH at 7 and controlling DO concentration at 50 % saturation throughout the fermentation process, improved biomass production, CFU counts and oral toxicity by 41.1, 35 and 32.1 %, respectively, as compared to cultures carried out in 500 mL shake flasks. At such conditions, 8 g/L glucose fed-batch fermentation, enhanced cell lysis and variants small colony (Vsm) polymorphism appearance. To overcome such limitations, glucose concentration should be maintained at 4 g/L. In this case, P. temperata cells were produced at high cell density and culturability reaching 4.5 and 1.2 × 109 cells/mL, respectively. In addition, the stability of the primary form was maintained for a long period in the stationary growth phase and Vsm polymorphism was completely avoided that can be crucial for scale-up the bioprocess of P. temperata bioinsecticide.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号