首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to further characterize the Sertoli cell state of differentiation, we investigated the expression of connexin 43 (cx43) protein in the testis of adult men both with normal spermatogenesis and associated with spermatogenic impairment, since cx43 is first expressed during puberty. Cx43 protein was found as a single 43-kDa band on western blots of extracts of normal human testicular material. Cx43 immunoreactivity was generally present between Leydig cells. Within the normal seminiferous epithelium cx43 immunoreactivity was localized between adjacent Sertoli cells, except at stages II and III of the seminiferous epithelial cycle when primary spermatocytes cross from the basal to the adluminal compartment suggesting a stage-dependent Sertoli cell function. While testes with hypospermatogenesis and spermatogenic arrest at the level of round spermatids or spermatocytes revealed a staining pattern similar to that of normal adult testis, the seminiferous tubules showing spermatogenic arrest at the level of spermatogonia and Sertoli-cell-only syndrome were completely immunonegative. We therefore assume that severe spermatogenic impairment is associated with a population of Sertoli cells exhibiting a stage of differentiation deficiency. Accepted: 10 June 1999  相似文献   

2.
The gap junction proteins, connexins (Cxs), are present in the testis, and among them, Cx43 play an essential role in spermatogenesis. In the present study, we investigated the testicular expression and regulation of another Cx, Cx33, previously described as a negative regulator of gap junction communication. Cx33 mRNA was present in testis and undetectable in heart, liver, ovary, and uterus. In the mature testis, Cx33 was specifically immunolocalized in the basal compartment of the seminiferous tubules, whereas Cx43 was present in both seminiferous tubule and interstitial compartments. During stages IX and X of spermatogenesis, characterized by Sertoli cell phagocytosis of residual bodies, Cx43 was poorly expressed within seminiferous tubules, while Cx33 signal was strong. To evaluate the role of phagocytosis in the control of Cx33 and Cx43 expression, the effect of LPS was analyzed in the Sertoli cell line 42GPA9. We show herein that phagocytosis activation by LPS concomitantly stimulated Cx33 and inhibited Cx43 mRNA levels. These effects appear to have been mediated through IL-1, because the exposure of Sertoli cells to the IL-1 receptor antagonist partly reversed these effects. IL-1 enhanced and reduced, respectively, the levels of Cx33 and Cx43 mRNA in a time- and dose-dependent manner. These data reveal that Cx33 and Cx43 genes are controlled differently within the testis and suggest that these two Cxs may exert opposite and complementary effects on spermatogenesis. Sertoli cell; germ cell proliferation  相似文献   

3.
Failure of spermatogenesis in mice lacking connexin43   总被引:8,自引:0,他引:8  
Connexin43 (Cx43), a gap junction protein encoded by the Gja1 gene, is expressed in several cell types of the testis. Cx43 gap junctions couple Sertoli cells with each other, Leydig cells with each other, and spermatogonia/spermatocytes with Sertoli cells. To investigate the role of this communication pathway in spermatogenesis, we studied postnatal testis development in mice lacking Cx43. Because such mice die shortly after birth, it was necessary to graft testes from null mutant fetuses under the kidney capsules of adult males for up to 3 wk. Grafted wild-type testes were used as controls. In our initial experiments with wild-type testes, histological examination indicated that the development of grafted testes kept pace with that of nongrafted testes in terms of the onset of meiosis, but this development required the presence of the host gonads. When excised grafts were stimulated in vitro with cAMP or LH, there was no significant difference in androgen production between null mutant and wild-type testes, indicating that the absence of Cx43 had not compromised steroidogenesis. Previous research has shown that Cx43 null mutant neonates have a germ cell deficiency that arises during fetal life, and our analysis of grafted testes demonstrated that this deficiency persists postnatally, giving rise to a "Sertoli cell only" phenotype. These results indicate that intercellular communication via Cx43 channels is required for postnatal expansion of the male germ line.  相似文献   

4.
5.
Intercellular communication through gap junctions (GJIC) plays an essential role in maintaining the functional integrity of vascular endothelium. Despite emerging evidence suggests that (−)-Epigallocatechin gallate (EGCG) may improve endothelial function. However, its effect on Cx43 gap junction in endothelial cells remains unexplored. Here we investigated the effect of EGCG on connexin43 (Cx43) gap junction in endothelial cells. The levels of Cx43 protein in human umbilical vein endothelial cells (HUVECs) cultured under serum-deprivation 48 h decreased about 50%, accompanied by decreased GJIC. This reduction can be reversed by treatments with EGCG. In addition, EGCG activated ERK, P38, and JNK mitogen-activated protein kinases (MAPKs), which were supposed to participate in the regulation of Cx43. A MEK inhibitor PD98059, but not SB203580 (a p38 kinase inhibitor) or SP600125 (a JNK kinase inhibitor), abolished the effects of EGCG on Cx43 expression and GJIC. Moreover, although both Akt and eNOS phosphorylation were time-dependently augmented by EGCG, neither PI3K inhibitor LY294002 nor eNOS inhibitor L-NAME blocked the effects of EGCG on Cx43 gap junctions. Thus, EGCG attenuated Cx43 down-regulation and impaired GJIC induced by serum deprivation, ERK MAPK Signal transduction pathway appears to be involved in these processes.  相似文献   

6.
Endothelin-1 (ET-1) is overexpressed in ovarian carcinoma and acts as an autocrine factor selectively through the ETA receptor (ETAR) to promote tumor cell proliferation, survival, neovascularization, and invasiveness. Loss of gap junctional intercellular communication (GJIC) is critical for tumor progression by allowing the cells to escape growth control. Exposure of HEY and OVCA 433 ovarian carcinoma cell lines to ET-1 led to a 50-75% inhibition in intercellular communication and to a decrease in the connexin 43 (Cx43)-based gap junction plaques. To investigate the phosphorylation state of Cx43, ovarian carcinoma cell lysates were immunoprecipitated and transient tyrosine phosphorylation of Cx43 was detected in ET-1-treated cells. BQ 123, a selective ETAR antagonist, blocked the ET-1-induced Cx43 phosphorylation and cellular uncoupling. Gap junction closure was prevented by tyrphostin 25 and by the selective c-Src inhibitor, PP2. Furthermore, the increased Cx43 tyrosine phosphorylation was correlated with ET-1-induced increase of c-Src activity, and PP2 suppressed the ET-1-induced Cx43 tyrosine phosphorylation, indicating that inhibition of Cx43-based GJIC is mainly mediated by the Src tyrosine kinase pathway. In vivo, the inhibition of human ovarian tumor growth in nude mice induced by the potent ETAR antagonist, ABT-627, was associated with a reduction of Cx43 phosphorylation. These findings indicate that the signaling mechanisms involved in GJIC disruption on ovarian carcinoma cells depend on ETAR activation, which leads to the Cx43 tyrosine phosphorylation mediated by c-Src, suggesting that ETAR blockade may contribute to the control of ovarian carcinoma growth and progression also by preventing the loss of GJIC.  相似文献   

7.
The effects of extremely low frequency (ELF) magnetic field on gap junctional intercellular communication (GJIC), protein levels, and phosphorylation of connexin43 (Cx43) were studied in NIH3T3 cells. The suppression of GJIC by 24 h, 50 Hz, 0.8 mT ELF magnetic field, 2 h, 3 ng/ml 12-O-tetradecanoylphorbol-13-acetate (TPA), or ELF combined with TPA treatment was confirmed by the fluorescence recovery after photobleaching (FRAP) analysis with a confocal microscope. The results showed that ELF or TPA exposure induced 50-60% inhibition of GJIC (P < 0.01). ELF combined with TPA enhanced the inhibition of GJIC. Western blot analysis using Cx43 specific antibodies showed obviously decreasing non phosphorylated Cx43 (P(0)) induced by ELF and/or TPA exposure. On the other hand, cells treated with ELF and/or TPA displayed a hyperphosphorylated Cx43 band (P(3)). However, there was no obvious changes in the level of Cx43 protein. The results implied that the P(3) band appeared to result from phosphorylation of P(0). But it remains possible that upon the ELF exposure P(0) is converted to P(1), P(2) or both and that P(3) is formed from P(1) or P(2) resulting in the observed hyperphosphorylation pattern. From the present study, we conclude that ELF magnetic field inhibits GJIC and the main mechanism is the hyperphosphorylation of Cx43.  相似文献   

8.
9.
10.
Intercellular communication through gap junctions (GJIC) is most likely relevant to maintaining the integrity of the blood-retinal barrier. In this study, we investigated the mechanism whereby high glucose enhances degradation of connexin 43 (Cx43), thus contributing to a decrease in GJIC. The levels of Cx43 in bovine retinal endothelial cells exposed to high glucose (25 mm) decreased about 50% as compared with controls (5.5 mm glucose). Consistently, the half-life of the protein decreased from 2.3 to 1.9 h. The proteasome inhibitors MG132 and lactacystin prevented the loss of Cx43 induced by high glucose and extended Cx43 half-life. The amount of phosphorylated Cx43 increased in high glucose and after proteasome inhibition. Scrape-loading dye transfer experiments show that high glucose is associated to a decrease of 40% in GJIC. Significantly, this reduction can be reversed by proteasome inhibitors. The decrease in GJIC in cells exposed to high glucose is associated with a loss of Cx43 from the plasma membrane, as demonstrated by immunofluorescence and biotinylation of cell-surface proteins. Results indicate that increased phosphorylation of Cx43 under high glucose is the mechanism targeting Cx43 for degradation by a proteasome-dependent mechanism. Increased degradation of Cx43 and reduction of GJIC in high glucose may be of physiological importance by contributing to endothelial cell dysfunction associated with the breakdown of the blood-retinal barrier in diabetic retinopathy.  相似文献   

11.
In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, β-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO−/−) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO−/− as compared to Wild-type testes. Ultrastructural analysis revealed disappearance of gap junctions, the presence of tight and adherens junctions and persistent integrity of the blood-testis barrier in SCCx43KO−/− testis. Occludin, N-cadherin and β-catenin levels were enhanced in SCCx43KO−/− mice as compared to Wild-type animals whereas ZO-1 levels were reduced. Cx43 siRNA blocked gap junction functionality in Sertoli cells and altered tight and adherens protein levels. The Cx43 control of tight and adherens junctions appeared channel-dependent since gap junction blockers (glycyrrhetinic acid and oleamide) led to similar results. These data suggest that the control of spermatogenesis by Cx43 may be mediated through Sertoli cell Cx43 channels, which are required, not only in cell/cell communication between Sertoli and germ cells, but also in the regulation of other junctional proteins essential for the blood-testis barrier.  相似文献   

12.
GJA1 (also known and referred to here as connexin 43 and abbreviated CX43) is the predominant testicular gap junction protein, and CX43 may regulate Sertoli cell maturation and spermatogenesis. We hypothesized that lack of CX43 would inhibit Sertoli cell differentiation and extend proliferation. To test this, a Sertoli cell-specific Cx43 knockout (SC-Cx43 KO) mouse was generated using Cre-lox technology. Immunohistochemistry indicated that CX43 was not expressed in the Sertoli cells of SC-Cx43 KO mice, but was normal in organs such as the heart. Testicular weight was reduced by 41% and 76% in SC-Cx43 KO mice at 20 and 60 days, respectively, vs. wild-type (wt) mice. Seminiferous tubules of SC-Cx43 KO mice contained only Sertoli cells and actively proliferating early spermatogonia. Sertoli cells normally cease proliferation at 2 wk of age in mice and become terminally differentiated. However, proliferating Sertoli cells were present in SC-Cx43 KO but not wt mice at 20 and 60 days of age. Thyroid hormone receptor alpha (THRA) is high in proliferating Sertoli cells, then declines sharply in adulthood. Thra mRNA expression was increased in 20-day SC-Cx43 KO vs. wt mice, and it showed a trend toward an increase in 60-day mice, indicating that loss of CX43 in Sertoli cells inhibited their maturation. In conclusion, we have generated mice lacking CX43 in Sertoli cells but not other tissues. Our data indicate that CX43 in Sertoli cells is essential for spermatogenesis but not spermatogonial maintenance/proliferation. SC-Cx43 KO mice showed continued Sertoli cell proliferation and delayed maturation in adulthood, indicating that CX43 plays key roles in Sertoli cell development.  相似文献   

13.
Geng S  Sun B  Liu S  Wang J 《Cell biology international》2007,31(11):1420-1427
Gap junctions, formed by connexin (Cx) family proteins, permit direct exchange of regulatory ions and small signal molecules between neighbouring cells. Gap junctional intercellular communication (GJIC) plays an important role in maintaining the homeostasis and preventing cell transformation. Most of the tumour cells feature deficient or aberrant connexin expression and GJIC level, and restoration of connexin expression and GJIC is correlated with cell growth control. Numerous researches has suggested the possibility of connexins as potential anti-tumour targets for chemoprevention and chemotherapy. We investigated the ability of Coleusin Factor (CF, also named FSK88) to regulate the Cx43 expression and GJIC level in rat osteosarcoma UMR106 cells. The results have demonstrated that CF increased the mRNA and protein expression of Cx43 in both in a dose- and timedependent manner, and concomitant with up-regulation of Cx43, CF treatment up-regulated the diminished GJIC level in UMR106 cells as assayed by dye transfer experiments. In addition, Cx43 distribution at the plasma membrane was also enhanced dramatically by CF treatment. Furthermore, we discovered that CF was potent to inhibit the growth and proliferation of UMR106 cells. These results provide the first evidence that CF can regulate connexin and GJIC, indicating that Cx43 may be a target of CF to exert its anti-tumour effects.  相似文献   

14.
15.
Zeng QL  Chiang H  Hu GL  Mao GG  Fu YT  Lu DQ 《Bioelectromagnetics》2003,24(2):134-138
We have previously demonstrated that exposure of Chinese hamster lung (CHL) cells to 50 Hz magnetic fields (MFs) and/or 12-O-tetradecanoylphorbol-3-acetate (TPA)-inhibited gap junctional intercellular communication (GJIC). To explore and compare the mechanisms of GJIC inhibition induced by extremely low frequency (ELF) MF and TPA, the number and localization of connexin 43 (C x 43) were studied. The localization of C x 43 was determined with indirect immunofluorescence histochemical analysis and detected by confocal microscopy after exposing CHL cells to 50 Hz sinusoidal magnetic field at 0.8 mT for 24 h without or with TPA (5 ng/ml) for the last 1 h. The C x 43 levels in nuclei and in cytoplasm were examined by Western blotting analysis. The results showed that the cells exposed to MF and/or TPA displayed individual plaques at regions of intercellular contact, which were fewer than the normal cells in number, while the number of C x 43 in cytoplasm increased and congregated near the nuclei. Western blot analysis further demonstrated the quantity of changes in location of Cx43. These results suggest that reduction of C x 43 at regions of intercellular contact may be one of the mechanisms of GJIC inhibition induced by ELF MF.  相似文献   

16.
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

17.
The gap junction proteins, connexins (Cx), are present in the testis and among them Cx43 play an essential role in spermatogenesis. By using an in vitro proliferation model of germ cells and Sertoli cells, we tempted here to clarify the role of Cx43 in the control of Sertoli and germ cell proliferation and apoptosis. Cx43 was detected in purified preparations of Sertoli cells and spermatogonia and immunolocalized in both cell types identified by vimentin and c-kit, respectively. Inhibition of gap junction coupling by the gap junction inhibitor α-GA significantly enhanced BrdU incorporation in Sertoli cells and reduced the number of activated caspase-3 positive germ cells. Similarly, inhibitory Cx43 and pan-Cx mimetic inhibitory peptides increased proliferation of Sertoli cells and stimulated survival of germ cells. Cx32 mimetic inhibitory peptide also stimulated Sertoli cell proliferation without altering germ cell proliferation and apoptosis. The present results reveal that Cx43 gap junctions between Sertoli cells participate in the control of Sertoli cell proliferation and that Cx43 gap junctions between Sertoli cells and spermatogonia are indirectly involved in germ cell number increase by controlling germ cell survival rather than germ cell proliferation.  相似文献   

18.
Follicle-stimulating hormone (FSH) and triiodothyronine (T3) are known regulatory factors of spermatogenesis initiation. Connexin 43 (Cx43) is the most ubiquitous constitutive protein of gap junctions in the testis. This study evaluates the effects of the hyperstimulation of FSH and T3 during testicular maturation on Cx43 expression in the testis. The newborn, male Wistar rats were divided randomly into four experimental groups: FSH group-daily injections of FSH 7.5?IU/animal; T3 group-100?μg T3/kg body weight; FSH+T3 group-both substances; A control group-received vehicles in the same volume. Proliferating cell nuclear antigen immunohistochemistry and toluidine blue staining were used to determine the germ cell proliferation and degeneration. Cx43 immunolocalization was evaluated to find Cx43 maturational changes. Under FSH treatment, the proliferation rate was high so the total number of Sertoli cells increased with a low level of degeneration and lumen formation. T3 stimulation evoked a reduction in the proliferation rate and a decrease in Sertoli cell number but with intensive formation of lumen. T3+FSH inhibited the proliferation rate and stimulated lumen formation together with degeneration, which negatively influenced the number of germ cells in the seminiferous epithelium. We conclude that T3 action seems to be particularly connected with the maturation of Cx43 gap junctions. FSH stimulates maturation of Sertoli cell function, but this effect may take place regardless of the presence of Cx43-dependent intercellular communication. The hyperstimulation of both FSH and T3 damages Cx43 connections and hence evokes regressional changes in the seminiferous epithelium.  相似文献   

19.
20.
Most cells can communicate directly via gap junction channels. Gap junction intercellular communication (GJIC) participates in the control of cell proliferation. Abnormal expression of connexins (Cx), the constitutive proteins of gap junctions, has been associated with a transformed phenotype. In the seminiferous tubules, connexin Cx43 is predominantly expressed by Sertoli cell and germinal cell membranes. We studied Cx43 expression in four testicular cancers (pure seminoma). Cx43 mRNA and protein characterized by RT PCR and Western blot were found to be similar to controls (normal testes) in each case. However, immunofluorscence study of Cx43 protein indicated a cytoplasmic localization with no membrane expression, excluding the participation of Cx43 in GJIC. The significance of this aberrant localization will be discussed in relation to carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号