首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclei have been isolated from Xenopus laevis embryos and incubated under conditions allowing RNA synthesis to proceed for more than 3 h. The RNA molecules synthesized on the endogenous template are stable, heterogeneous in size and correspond to the activities of the three RNA polymerases.In these in vitro conditions we have determined the extent of activity of the three RNA polymerases during the embryonic development from blastula to swimming tadpole. Our results on isolated nuclei are in good agreement with the changes in RNA synthesis which take place during normal embryonic development.We have measured both the “template-bound” and the “free” activities of each of the three RNA polymerases during development. Amongst the total RNA polymerase activities engaged on the template, the proportion of polymerase I increases as development proceeds: at the blastula stage, there is practically no RNA polymerase I engaged on the template, whereas in swimming tadpoles, RNA polymerase I amounts to about 90% of the RNA polymerases bound to the DNA. Conversely, RNA polymerase I represents the major part of free RNA polymerases in blastula nuclei.Autoradiography of incubated nuclei shows that, at least in swimming tadpoles nuclei, both “free” and “template-bound” RNA polymerase I are localized in the nucleoli.The evolution of “template-bound” RNA polymerase II activity during development is quite different from that of RNA polymerase I: RNA polymerase II activity represents 75% of engaged polymerase activity in blastulae and only 47% at the swimming tadpoles stage.The results suggest that part of the “free” RNA polymerase I activity might progressively become “template-bound” during embryogenesis.  相似文献   

2.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin α-amanitin was used to determine the relative and absolute levels of RNA synthesis by RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was monitored by hybridization to viral DNA, and of viral 5.5S RNA, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

3.
DNA-dependent RNA polymerase was extracted from oocytes of the frog, Rana pipiens. The bulk of the enzyme activity was present in the germinal vesicle and the amounts of each major form of such activity did not significantly change during oocyte maturation. Therefore, either nuclear polymerase activity is conserved after breakdown of the oocyte nucleus during maturation or, alternatively, de novo synthesis of the enzymes must occur during oocyte maturation concomitant with degradation. We have measured rates of protein synthesis in oocytes and determined a maximum rate of synthesis for RNA polymerases. Our kinetic studies show that no more than 20, 10, and 5% of RNA polymerases type I, IIa, and IIb, respectively, could be synthesized during steroid-induced oocyte maturation. These results thus show that the bulk of RNA polymerase accumulates in the germinal vesicle during oogenesis, is dispersed into the cytoplasm during maturation, and, since only limited synthesis seems to be occurring, the polymerase is available during embryogenesis.  相似文献   

4.
5.
RNA polymerase I and II activities were measured in tissues of the soybean (Glycina max, var. Wayne) hypocotyl where dramatic changes in the relative level of RNA synthesis are associated with normal and auxin-induced growth transitions. When assayed in isolated nuclei, the activity of RNA polymerase I changed much more than the activity of RNA polymerase II during these growth transitions. The activity of RNA polymerase I expressed in the nuclei generally showed a positive correlation with the relative level of RNA synthesis (i.e. accumulation) of that tissue. Following solubilization of the RNA polymerases from these isolated nuclei and fractionation of them on DEAE-cellulose, the activity of RNA polymerase I relative to that of RNA polymerase II showed smaller changes during these growth transitions than when assayed in the nuclei. Thus, these data indicate that the activity of RNA polymerase I is significantly modulated in the nucleus, up or down depending upon the growth state, during growth transitions in the soybean in addition to lesser changes which occur in the apparent level of the enzyme.  相似文献   

6.
Using α-amanitin to inhibit polymerase II activity in intact nuclei from Oncopeltus embryos, it is demonstrated that there is no difference in relative amounts of α-amanitin-resistant (Form I) and α-amanitin-sensitive (Form II) polymerases at two stages of embryonic development (70 and 140 hr), although the total polymerase activity is considerably higher at the earlier stage. However the RNA made under these circumstances (presumably due to Form I activity) appears to be, as expected, largely ribosomal.When the RNA polymerase activities are solubilized and separated, there is a substantially higher level of Form I activity in 70-hr embryos over that in 140-hr embryos. It is suggested that this high level of polymerase activity is correlated directly with the high level of ribosomal RNA synthesis at this stage.  相似文献   

7.
The rates of RNA synthesis in cultured human KB cells infected by adenovirus 2 were estimated by measuring the endogenous RNA polymerase activities in isolated nuclei. The fungal toxin alpha-amanitin was used to determine the relative and absolute levels of RNA polymerases I, II, and III in nuclei isolated during the course of infection. Whereas the level of endogenous RNA polymerase I activity in nuclei from infected cells remained constant relative to the level in nuclei from mock-infected cells, the endogenous RNA polymerase II and III activities each increased about 10-fold. These increases in endogenous RNA polymerase activities were accompanied by concomitant increases in the rates of synthesis in isolated nuclei of viral mRNA precursor, which was quantitated by electrophoretic analysis on polyacrylamide gels. The cellular RNA polymerase levels were measured with exogenous templates after solubilization and chromatographic resolution of the enzymes on DEAE-Sephadex, using procedures in which no losses of activity were apparent. In contrast to the endogenous RNA polymerase activities in isolated nuclei, the cellular levels of the solubilized class I, II, and III RNA polymerases remained constant throughout the course of the infection. Furthermore, no differences were detected in the chromatographic properties of the RNA polymerases obtained from infected or control mock-infected cells. These observations suggest that the increases in endogenous RNA polymerase activities in isolated nuclei are not due to variations in the cellular concentrations of the enzymes. Instead, it is likely that the increased endogenous enzyme activities result from either the large amounts of viral DNA template available as a consequence of viral replication of from replication or from functional modifications of the RNA polymerases or from a combination of these effects.  相似文献   

8.
9.
The main classes of RNA polymerase in cultured chick embryo skeletal muscle cells were identified and their levels determined during differentiation in vitro. Cell cultures contained a high proportion of muscle cells (>80%) and exhibited a high degree of fusion (>80%). The levels of RNA polymerases I and II increased by 1.8 and 1.5 times, respectively, from prefusion myoblasts (24 hr) to postfusion myotubes (120 hr). RNA polymerase III, a single peak on DEAE-Sephadex chromatography, was less than 7% of the total activity. The results suggest that the rates of synthesis of the main RNA types, which reportedly decline during myogenesis, are not determined by the relative levels of the main RNA polymerases and are more likely a reflection of chromatin template availability.  相似文献   

10.
DNA-dependent RNA polymerase has been measured at various stages of preimplantation development in mouse embryos. The total RNA polymerase activity per embryo increases rapidly from the 8-cell stage to the blastocyst stage. Studies with low α-amanitin concentrations, which inhibit form II RNA polymerase, and high α-amanitin concentrations, which inhibit both form II and III RNA polymerases indicate that the relative proportions of the three forms change significantly during preimplantation development. The changes which occur in the types and levels of RNA polymerase appear to parallel corresponding changes in the synthesis of the major classes of RNA.  相似文献   

11.
12.
13.
14.
Partial purification and characterization of DNA-dependent RNA-polymerases from nauplius larvae of the brine shrimp, Artemia salina, are described. Fractionation of solubilized RNA-polymerases on columns of DEAE-cellulose yielded partially purified preparations of RNA polymerases I and II. The properties of these enzymes were found to be similar to properties of corresponding enzymes from other animal sources. A significant change in the relative amounts of polymerases I and II occurs between 36 and 72 hr of development. Polymerase activity obtained from 36-hr nauplii consisted of approximately equal amounts of polymerases I and II, whereas polymerase II accounted for more than 80% of the activity recovered from 72-hr nauplii. Total polymerase activity was lower at 72 than at 36 hr. The significance of these changes in relation to the decrease in RNA synthesis in vivo that occurs after 36 hr is discussed.  相似文献   

15.
The influence of photoperiodic induction on the incorporation of uridine-3H into the shoot apices ofChenopodium rubrum was studied using the technique of autoradiography. No increase in uridine incorporation was detected either during induction lasting three days or immediately after its termination. Pyroninophylia likewise did not rise. However, changes in uridine incorporation related to morphogenetic activity during leaf formation and later during differentiation of inflorescences were well marked. The distribution of label in the nucleus immediately after three inductive cycles shows the ratio of extranucleolar to nucleolar incorporation to be higher in non-induced control plants than in induced ones. Data from literature pointing to an activation of RNA synthesis during transition to flowering are discussed and compared with other systems where ontogenetic changes are accompanied by marked changes in RNA synthesis. It is assumed that the activation of RNA synthesis after induction is connected mainly with the activation of growth. However, inChenopodium rubrum photoperiodic induction proceeds together with limited growth and without activation of RNA synthesis.  相似文献   

16.
Among 150 temperature-sensitive Saccharomyces cerevisiae mutants which we have isolated, 15 are specifically affected in ribonucleic acid (RNA) synthesis. Four of these mutants exhibit particularly drastic changes and were chosen for a more detailed study. In these four mutants, RNA synthesis is immediately blocked after a shift at the nonpermissive temperature (37 C), protein synthesis decays at a rate compatible with messenger RNA half-life, and deoxyribonucleic acid synthesis increases by about 40%. All the mutations display a recessive phenotype. The segregation of the four allelic pairs ts-/ts+ in diploids is mendelian, and the four mutants belong to three complementation groups. The elution patterns (diethylaminoethyl-Sephadex) of the three RNA polymerases of the mutants grown at 37 C for 3.5 h show very low residual activities. The in vitro thermodenaturation confirms the in vivo results; the half-lives of the mutant activities at 45 C are 10 times smaller than those of the wild-type enzymes. Polyacrylamide gel electrophoresis shows that the synthesis of all species of RNA is thermosensitive. The existence of three distinct genes, which are each indispensable for the activity of the three RNA polymerases in vivo as well as in vitro, strongly favors the hypothesis of three common subunits in the three RNA polymerases.  相似文献   

17.
Ribonucleic acid (RNA) polymerases of Histoplasma capsulatum (yeast phase) were fractionated by phosphocellulose chromatography and partially characterized. Three distinct, active fractions were seen. The major RNA polymerase species was inhibited strongly by α-amanitin, whereas the other two were resistant. When either slightly purified (HSE) extract or the major active component was assayed at 37 C, the incorporation of tritiated uridine monophosphate into RNA stopped after 10 to 15 min. In contrast, the synthesis continued for at least 1 h at 23 C. The other two RNA polymerase species exhibited higher rates of incorporation when tested at 37 C, and continued to synthesize RNA even after 60 min. However, by that time the levels of incorporation at 23 C were higher than at 37 C for all three enzymes. The temperature sensitivity was not affected by changing substrate concentration or employing either native or denatured calf thymus deoxyribonucleic acid as a template. These results are compared with the data obtained with RNA polymerases from different fungi and other organisms. A possible involvement of RNA polymerase(s) in morphological differentiation of H. capsulatum is discussed.  相似文献   

18.
Measurements of the endogenous RNA polymerase activities of nuclei isolated from immature rabbit uteri have shown that prior treatment of the animals with oestradiol-17beta has a profound effect on the apparent activities of both RNA polymerases A and B. Within 1 h of hormone treatment, the activity of RNA polymerase A is increased and continues to rise until about 4h when it reaches a plateau and remains steady until at least 8h. The activity of RNA polymerase B increases sharply after oestradiol treatment reaching an early maximum at 30-45 min. Thereafter this activity declines until by 1-2h it approaches control values but a second increase in activity then occurs with a maximum at 3-4h. Treatment of the rabbits with alpha-amanitin before the administration of oestradiol inhibits the hormone-induced stimulation of RNA polymerase A activity in isolated nuclei but when the administration of alpha-amanitin is delayed until after the early rise of RNA polymerase B activity, the oestradiol-induced stimulation of RNA polymerase A is retained. Similar results have been obtained in experiments with cycloheximide suggesting that the stimulation of RNA polymerase A activity by oestradiol is dependent on the hormone-induced stimulation of RNA polymerase B and the subsequent synthesis of protein using the RNA product of the early increase in RNA polymerase B activity. Measurement of the activities of RNA polymerases A and B after isolation of the enzymes from immature rabbit uterine nuclei before and after oestradiol treatment failed to show any differences. Therefore it would appear that the changes in the observed activities of RNA polymerases A and B in isolated nuclei are consequences of changes in the structure and function of chromatin rather than the results of modifications in the RNA polymerases themselves.  相似文献   

19.
QDE-1 is an RNA- and DNA-dependent RNA polymerase that has functions in the RNA silencing and DNA repair pathways of the filamentous fungus Neurospora crassa. The crystal structure of the dimeric enzyme has been solved, and the fold of its catalytic core is related closely to that of eukaryotic DNA-dependent RNA polymerases. However, the specific activities of this multifunctional enzyme are still largely unknown. In this study, we characterized the in vitro activities of the N-terminally truncated QDE-1ΔN utilizing structure-based mutagenesis. Our results indicate that QDE-1 displays five distinct catalytic activities, which can be dissected by mutating critical amino acids or by altering reaction conditions. Our data also suggest that the RNA- and DNA-dependent activities have different modes for the initiation of RNA synthesis, which may reflect the mechanism that enables the polymerase to discriminate between template nucleic acids. Moreover, we show that QDE-1 is a highly potent terminal nucleotidyltransferase. Our results suggest that QDE-1 is able to regulate its activity mode depending on the template nucleic acid. This work extends our understanding of the biochemical properties of the QDE-1 enzyme and related RNA polymerases.  相似文献   

20.
Activities of DNA polymerases and RNA polymerases were studied by autoradiographic methods in growing and differentiating root cortex cells of Zea mays - a species in which endomitosis occurs - and Tulipa kaufmanniana - in which this process does not occur. In Tulipa kaufmanniana, the highest activity of DNA polymerase appears in the nuclei of meristematic zone during the S phase of the cell cycle. In Zea mays, endomitotic replication of DNA occurs in all growth and differentiation zones and the activity of DNA polymerase in the nuclei is similar to that in the meristematic zone. In both species, nuclear RNA synthesis, measured with 3H uridine incorporation, is highest in the meristematic zone and declines steadily with development. Activity of nuclear RNA polymerase is present in all developmental zones in both species and is similar to that in the meristematic zone. 3H uridine incorporation into nucleoli decreases markedly in both species, whereas the activity of nucleolar RNA polymerase remains at a high level in all root segments in Zea mays and decreases slightly in Tulipa kaufmanniana. It is argued that the differences between the incorporation of 3H uridine and that or 3H UMP may be caused by a reduction of the pool of endogenous ribonucleoside triphosphates. Marked activities of DNA polymerase and RNA polymerase in cytoplasm are possibly related to the growth and division of plastids and mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号