首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new square-planar Pt(II) and Pd(II) complexes with cytokinin-derived compounds Bohemine and Olomoucine, having the formulae [Pt(BohH(+))Cl(3)].H(2)O (1), [Pt(Boh)(2)Cl(2)].3H(2)O (2), [Pt(Boh-H)Cl(H(2)O)(2)].H(2)O (3), [Pt(OloH(+))Cl(3)].H(2)O (4), [Pd(BohH(+))Cl(3)].H(2)O (5), [Pd(Boh)Cl(2)(H(2)O)] (6), [Pd(Boh-H)Cl(H(2)O)].EtOH (7) and [Pd(OloH(+))Cl(3)].H(2)O (8), where Boh=6-(benzylamino)-2-[(3-(hydroxypropyl)amino]-9-isopropylpurine and Olo=6-(benzylamino)-2-[(2-(hydroxyethyl)amino]-9-methylpurine, have been synthesized. The complexes have been characterized by elemental analyses, IR, FAB+ mass, 1H, 13C and 195Pt NMR spectra, and conductivity data. The molecular structure of the complex [Pt(BohH(+)-N7)Cl(3)].9/5H(2)O has been determined by an X-ray diffraction study. Results from physical studies show that both Bohemine and Olomoucine are coordinated to transition metals through the N(7) atom of purine ring in all the complexes. The prepared compounds have been tested in vitro for their possible cytotoxic activity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines and IC(50) values have been also determined for all the complexes. IC(50) values estimated for the Pt(II)-Bohemine complexes (2.1-16 microM) allow us to conclude that they could find utilization in antineoplastic therapy. Thus, from a pharmacological point of view, Pt(II) complexes of Bohemine may represent compounds for a new class of antitumor drugs.  相似文献   

2.
A series of platinum(II) complexes with 2,9-disubstituted-6-benzylaminopurines has been prepared. The complexes have the following composition: cis-[Pt(Boh)(2)Cl(2)] (1), cis-[Pt(Oc)(2)Cl(2)] (2), cis-[Pt(Ros)(2)Cl(2)] (3), cis-[Pt(i-PrOc)(2)Cl(2)] (4), cis-[Pt(BohH(+))(2)Cl(2)]Cl(2) (5), cis-[Pt(OcH(+))(2)Cl(2)]Cl(2) (6), cis-[Pt(RosH(+))(2)Cl(2)]Cl(2) (7) and cis-[Pt(i-PrOcH(+))(2)Cl(2)]Cl(2) (8), where Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine, Oc=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine, Ros=2-(R)-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine and i-PrOc=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine. The complexes have been characterized by elemental analyses, conductivity measurements and their infrared, ES+mass (electrospray mass spectra in the positive ion mode) and NMR ((1)H, (13)C, (15)N and (195)Pt) spectra. The results obtained from the physical studies, particularly from multinuclear NMR spectroscopy, show that in all the investigated complexes (1-8), two molecules of purine derivative are coordinated to platinum via the N(7) atom of the imidazole ring in a cis-configuration. The prepared compounds have been screened for their in vitro cytotoxicity against G-361 (human malignant melanoma), HOS (human osteogenic sarcoma), K-562 (human chronic myelogenous leukemia) and MCF-7 (human breast adenocarcinoma) cell lines. All complexes are significantly more active than the initial 2,9-disubstituted-6-benzylaminopurine derivatives. In the case of some tumour cell lines, IC(50) values for the complexes (1, 3, 4, 5, 8) are significantly lower than those obtained for cisplatin and oxaliplatin. The best cytotoxicity was achieved for the complex (3) for which IC(50) values range from 1 to 2 microM.  相似文献   

3.
A series of square-planar Pd(II) complexes of the composition cis-[Pd(L(n))(2)Cl(2)] {L(1)=2-chloro-6-benzylamino-9-isopropylpurine (1), L(2)=2-chloro-6-[(4-methoxybenzyl)amino]-9-isopropylpurine (2), L(3)=2-chloro-6-[(2-methoxybenzyl)amino]-9-isopropylpurine (3) and 2-[(chloropropyl)amino]-6-benzylamino-9-isopropylpurine (6)} has been synthesized by the reaction of PdCl(2) with L(n) in a 1:2 molar ratio. In contrast, the same reaction followed by recrystallization of the product from N,N'-dimethylformamide (DMF) leads to trans-[Pd(L(n))(2)Cl(2)] x nDMF {L(3), n=0 (4), n=1(4( *)DMF); L(4)=2-chloro-6-[(2,3-dimethoxybenzyl)-amino]-9-isopropylpurine, n=0 (5), n=1.5 (5( *)DMF). The compounds have been characterized by elemental analyses, conductivity measurements, electrospray mass spectra in the positive ion mode (ES+MS), FTIR, (1)H and (13)C NMR spectra, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the complexes 2 and 6 have been also investigated by (15)N NMR spectroscopy. The molecular structures of L(5), {(H(2+)L(5))(Cl(-))(2)} x H(2)O, i.e. the protonated form of L(5), trans-[Pd(L(3))(2)Cl(2)] (4) and trans-[Pd(L(4))(2)Cl(2)] (5) have been determined by single crystal X-ray analysis. NMR data and X-ray structures revealed that the organic molecules are coordinated to Pd via N7 atom of a purine moiety. All the complexes and the corresponding ligands have been tested in vitro for their cytotoxicity against four human cancer cell lines: breast adenocarcinoma (MCF7), malignant melanoma (G361), chronic myelogenous leukaemia (K562) and osteogenic sarcoma (HOS). Promising in vitro cytotoxic effect has been found for cis-[Pd(L(2))(2)Cl(2)] (2), having the IC(50) values of 12, 10, 25, and 14 microM against MCF7, G361, K562, and HOS, respectively, and for trans-[Pd(L(3))(2)Cl(2)].DMF (4) with the IC(50) value of 15 microM against G361.  相似文献   

4.
Twelve zinc(II) complexes with thiosemicarbazone and semicarbazone ligands were prepared and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FT-IR and 1H and 13C NMR spectroscopy. Seven three-dimensional structures of zinc(II) complexes were determined by single-crystal X-ray analysis. Their antimicrobial activities were evaluated by MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 5- and 6-coordinate zinc(II) complexes with a tridentate thiosemicarbazone ligand (Hatsc), ([Zn(atsc)(OAc)](n) 1, [Zn(Hatsc)(2)](NO(3))(2).0.3H(2)O 2, [ZnCl(2)(Hatsc)] 3 and [Zn(SO(4))(Hatsc)(H(2)O)].H(2)O 4 [Hatsc=2-acetylpyridine(thiosemicarbazone)]), showed antimicrobial activities against test organisms, which were different from those of free ligands or the starting zinc(II) compounds. Especially, complex 2 showed effective activities against P. aeruginosa, C. albicans and moderate activities against S. cerevisiae and two molds. These facts are in contrast to the results that the 5- or 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridine-4N-morpholinethiosemicarbazone, ([Zn(mtsc)(2)].0.2EtOH 5, the previously reported catena-poly [Zn(mtsc)-mu-(OAc-O,O')](n) and [Zn(NO(3))(2)(Hmtsc)] [Hmtsc=2-acetylpyridine (4N-morpholyl thiosemicarbazone)]), showed no activities against the test microorganisms. The 5- and 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridinesemicarbazone, ([Zn(OAc)(2)(Hasc)] 6 and [Zn(Hasc)(2)](NO(3))(2) 7 [Hasc=2-acetylpyridine(semicarbazone)]), showed no antimicrobial activities against bacteria, yeasts and molds. Complex [ZnCl(2)(Hasc)] 8, which was isostructural to complex 3, showed modest activity against Gram-positive bacterium, B. subtilis. The 1:1 complexes of zinc(II) with pentadentate thiosemicarbazone ligands, ([Zn(dmtsc)](n) 9 and [Zn(datsc)](n) 10 [H(2)dmtsc=2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone) and H(2)datsc=2,6-diacetylpyridine bis(thiosemicarbazone)]), did not inhibit the growth of the test organisms. On the contrary, 7-coordinate zinc(II) complexes with one pentadentate semicarbazone ligand and two water molecules, ([Zn(H(2)dasc)(H(2)O)(2)](OAc)(2).5.3H(2)O 11 and [Zn(H(2)dasc)(H(2)O)(2)](NO(3))(2).H(2)O 12 [H(2)dasc=2,6-diacetylpyridine bis(semicarbazone)]), showed modest to moderate activities against bacteria. Based on the X-ray structures, the structure-activity correlation for the antimicrobial activities was elucidated. The zinc(II) complexes with 4N-substituted ligands showed no antimicrobial activities. In contrast to the previously reported nickel(II) complexes, properties of the ligands such as the ability to form hydrogen bonding with a counter anion or hydrated water molecules or the less bulkiness of the 4N moiety would be a more important factor for antimicrobial activities than the coordination number of the metal ion for the zinc(II) complexes.  相似文献   

5.
The Pt(II) and Pd(II) complexes of the types cis-[Pt(L(1))(2)Cl(2)].H(2)O (1), cis-[Pt(L(2))(2)Cl(2)].3H(2)O (2), trans-[Pd(L(1))(2)Cl(2)].H(2)O (3), trans-[Pd(L(2))(2)Cl(2)].H(2)O (4), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) (L(1)-L(4)=cyclin-dependent kinase inhibitors derived from 6-benzylamino-9-isopropylpurine) have been prepared and characterized. The complexes have been studied by elemental analyses, conductivity measurements, ES+ MS, FT-IR, (1)H, (13)C and (195)Pt NMR spectra, differential scanning calorimetry and thermogravimetric analysis. The molecular structures of L(1), trans-[Pd(L(3))(2)Cl(2)].2DMF (5) and trans-[Pd(L(4))(2)Cl(2)].2DMF (6) have been determined by single crystal X-ray analysis. The complexes have been tested in vitro due to their presumable anticancer activity against the following human cancer cell lines: K-562, MCF7, G-361 and HOS. Satisfying results were obtained for the complex 1 with IC(50) values of 6 microM acquired against G-361 as well as against HOS cell lines. The lowest values of IC(50) were achieved for the complexes 3 and 4 against MCF 7 cell line with IC(50) 3 microM(for 3) and also 3 microM (for 4).  相似文献   

6.
In this work we present the synthesis and structural and spectroscopic characterization of Cu(II), Co(II) and Zn(II) coordination compounds with the antibiotic metronidazole ([double bond]emni). Coordination to metal ions is through its imidazolic nitrogen, while the hydroxyethyl and nitro groups act as supramolecular synthons. [Co(emni)(2)Br(2)], and [Zn(emni)(2)X(2)] (X(-)=Cl, Br) stabilize zig-zag chains, and a 2D supramolecular structure is formed by inter-chain contacts through inter-molecular hydrogen-bonding. Pleated sheet or layers are formed by [Co(emni)(2)Cl(2)] and [Cu(emni)(2)Cl(H(2)O)](2)Cl(2), respectively. The dinuclear Cu(II) compound [Cu(emni)mu(O(2)CMe)(2)](2) gives a one-dimensional zig-zag arrangement. The contribution of metal ions in metronidazole coordination compounds is shown in the stabilization of the different aggregate structures.  相似文献   

7.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X-ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N- and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest d(x(2)-y(2)) as the ground state. X-ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

8.
Transition metal complexes containing bidentate N, S donor ligands i.e., carvone thiosemicarbazone [(RS)-5-isopropenyl-2-methylcyclohex-2-en-1-one thiosemicarbazone (IPMCHTSC)] and carvone N(1)-phenylthiosemicarbazone [(RS)-5-isopropenyl-2-methylcyclohex-2-en-1-one phenylthiosemicarbazone (IPMCHPhTSC)] have been synthesized. All the metal complexes (1-8) have been characterized by elemental analysis, molar conductance measurement and various spectral studies [infrared (IR), electronic, fast-atom bombardment (FAB) mass and NMR (for ligands)] and thermogravimetric analysis. FAB mass spectroscopic studies of (1), (3), (4), (5), (6) (7), and (8) suggest their monomeric nature. Metal complexes are [M(LH)Cl(2)] and [M(LH)(2)Cl(2)] type, where M?=?Fe(III), Co(II), and Cu(II) and LH?=?IPMCHTSC and IPMCHPhTSC. The proposed geometries of the complexes were octahedral for 1:2 complexes, square planar for 1:1 complexes and distorted octahedral for Cu(II) complexes (1:2). The free radical scavenging activity of ligands (IPMCHTSC and IPMCHPhTSC) and their metal complexes have been determined at the concentration range of 10-400 μg/mL by means of their interaction with the stable free radical 2,2'-diphenyl-1-picrylhydrazyl and 5-200 μg/mL by 2,2'-Azinobis-3-ethylbenzothiazoline-6-sulphonic acid. All the compounds have shown encouraging antioxidant activities.  相似文献   

9.
The synthesis and spectroscopic (IR, (1)H and (13)C NMR) characterization of new complexes of Pt(II), Pd(II), Cu(II), and Hg(II) with the Schiff base ligand MeCONHCH(2)CH(2)N=CHPy (L) (Py=pyridine) are reported, together with studies on the cytotoxicities of these complexes, L and [ReBr(CO)(3)(L)] against human leukemia (MOLT-4), breast cancer (MCF-7) and Chang Liver (non-cancerous) cells. The crystal structures of [Pt(L)Cl(2)] (2), [Cu(L)Cl(2)] (4) and [Hg(L)Cl(2)](2) (5) are also reported. Of the complexes studied, [Cu(L)Cl(2)] (4) was identified as the most cytotoxic active derivative against cells of neoplastic origin (MOLT-4, and MCF-7), while having low toxicity on cells of benign origin (Chang Liver).  相似文献   

10.
Three new binary Cu(II) complexes of norfloxacin have been synthesized and characterized. We also report the synthesis, characterization and X-ray crystallographic structures of a new binary compound, [Cu(HNor)(2)]Cl(2).2H(2)O (2) and two new ternary complexes norfloxacin-copper(II)-phen, [Cu(Nor)(phen)(H(2)O)](NO(3)).3H(2)O (4), and [Cu(HNor)(phen)(NO(3))](NO(3)).3H(2)O (5). The structure of 2 consists of two crystallographically independent cationic monomeric units of [Cu(HNor)(2)](2+), chloride anions, and uncoordinated water molecules. The Cu(II) ion is placed at a center of symmetry and is coordinated to two norfloxacin ligands which are related through the inversion center. The structures of 4 and 5 consist of cationic units ([Cu(Nor)(phen)(H(2)O)](+) for 4 and [Cu(HNor)(phen)(NO(3))](+) for 5), nitrate counteranions, and lattice water molecules that provide crystalline stability through a network of hydrogen-bond interactions. The complexes exhibit a five coordinated motif in a square pyramidal environment around the metal center. The ability of compounds 4 and 5 to cleave DNA has also been studied. Mechanistic studies with different inhibiting reagents reveal that hydroxyl radicals, singlet oxygen, and superoxide radicals are all involved in the DNA scission process mediated by these compounds.  相似文献   

11.
The Fe coordination chemistry of several tripodal aminopyridyl hexadentate chelators is reported along with cytotoxicity toward cultured Hela cells. The chelators are based on cis, cis-1,3,5-triaminocyclohexane (tach) with three pendant -CH2-2-pyridyl groups where 2-pyridyl is R-substituted thus are named tach-x-Rpyr where x=3, R=Me; x=3, R=MeO; x=6; R=Me. The structures of [Fe(tach-3-Mepyr)]Cl2 and [Fe(tach-3-MeOpyr)](FeCl4) are reported and their metric parameters indicate strongly bound, low-spin Fe(II). The structure of [Fe(tach-6-Mepyr)](ClO4)2 implies steric effects of 6-Me groups push donor Npy's away so one Fe-Npy bond is substantially longer at 2.380(3)A vs. 2.228(3)A for the others, and Fe(II) in the high-spin-state. Accordingly, anions X(-)=Cl or SCN afford [Fe(tach-6-Mepyr)(X)]+ from [Fe(tach-6-Mepyr)]2+ (UV-vis spectroscopy). Consistent with a biological cytotoxicity involving Fe chelation, chelators of low-spin Fe(II) have greater toxicity in the order [IC50(72 h) is in parentheses then the spin-state SS=H (high) or L (low)]: tachpyr=tach-3-Mepyr (6 microM, SS=L) greater, similar tach-3-MeOpyr (12microM, SS=L)>tach-6-Mepyr (>200 microM, SS=H). Iron-mediated oxidative dehydrogenation with O2 oxidant removes hydrogens from coordinated nitrogen and the adjacent CH2, converting aqueous [Fe(tach-3-Rpyr)]2+ (R=H, Me and MeO) into a mix of low-spin imino- and aminopyridyl-armed complexes, but [Fe(tach-6-Mepyr)]2+ does not react (NMR and ESI-MS spectroscopies). The difference of IC(50) for chelators at different time points (delta IC50=[IC50(24h)-IC50(72 h)]) is used to compare rate of cytotoxic action to qualitative rate of oxidation in the Fe-bound chelator, giving the order, from rapid to slow oxidation and cell killing of: [Fe(tach-3-Mepyr)]2+ (delta IC50=5 microM)>[Fe(tachpyr)]2+ (delta IC50=16 microM)>[Fe(tach-3-MeOpyr)]2+ (delta IC50=118 microM). Thus, those chelators whose Fe(II) complexes undergo rapid oxidation kill cells faster, and those that bind Fe(II) as low-spin are far more cytotoxic.  相似文献   

12.
Three hexaaza macrocyclic copper (II) complexes with different functional groups have been synthesized and characterized by elemental analysis and infrared spectra. Absorption and fluorescence spectral, cyclic voltammetric and viscometric studies have been carried out on the interaction of [CuL(1)]Cl(2) (L(1)[double bond]3,10-bis(2-methylpyridine)-1,3,5,8,10,12-hexaazacyclotetradecane), [CuL(2)]Cl(2) (L(2)[double bond]3,10-bis(2-propionitrile)-1,3,5,8,10,12-hexaazacyclotetradecane) and [CuL(3)]Cl(2) (L(3)=3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) with calf thymus DNA. The results suggest that three complexes can bind to DNA by different binding modes. The spectroscopic studies together with viscosity experiments and cyclic voltammetry suggest that [CuL(1)](2+) could bind to DNA by partial intercalation via pyridine ring into the base pairs of DNA. [CuL(2)](2+) may bind to DNA by hydrogen bonding and hydrophobic interaction while [CuL(3)](2+) may be by weaker hydrogen bonding. The functional groups on the side chain of macrocycle play a key role in deciding the mode and extent of binding of complexes to DNA. Noticeably, the three complexes have been found to cleave double-strand pUC18 DNA in the presence of 2-mercaptoethanol and H(2)O(2).  相似文献   

13.
Complexes of the type [M(pabh)(H2O)Cl], [M(pcbh)(H2O)Cl] and [M(Hpabh)(H2O)2 (SO4)] where, M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpabh = p-amino acetophenone benzoyl hydrazone and Hpcbh = p-chloro acetophenone benzoyl hydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra, thermal (TGA & DTA) and X-ray diffraction studies. Co(II), Ni(II) and Cu(II) chloride complexes are square planar, whereas their sulfate complexes have spin-free octahedral geometry. ESR spectra of Cu(II) complexes with Hpabh are axial and suggest d(x(2)-y(2) as the ground state. The ligand is bidentate bonding through > C = N--and deprotonated enolate group in all the chloro complexes, whereas, >C = N and >C = O groups in all the sulfato complexes. Thermal studies (TGA & DTA) on [Cu(Hpabh)(H2O)2(SO4)] indicate a multistep decomposition pattern, which are both exothermic and endothermic in nature. X-ray powder diffraction parameters for [Co(pabh)(H2O)Cl] and [Ni(Hpabh)(H2O)2(SO4)] correspond to tetragonal and orthorhombic crystal lattices, respectively. The ligands as well as their complexes show a significant antifungal and antibacterial activity. The metal complexes are more active than the ligand.  相似文献   

14.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in the formation of dinitrosyl iron complexes (DNICs) coordinated by cysteine residues from the peptide backbone or with low molecular weight sulfur-containing molecules like glutathione. Such DNICs are among the modes available in biology to store, transport, and deliver NO to its relevant targets. In order to elucidate the fundamental chemistry underlying the formation of DNICs and to characterize possible intermediates in the process, we have investigated the interaction of NO (g) and NO(+) with iron-sulfur complexes having the formula [Fe(SR)(4)](2-), where R=(t)Bu, Ph, or benzyl, chosen to mimic sulfur-rich iron sites in biology. The reaction of NO (g) with [Fe(S(t)Bu)(4)](2-) or [Fe(SBz)(4)](2-) cleanly affords the mononitrosyl complexes (MNICs), [Fe(S(t)Bu)(3)(NO)](-) (1) and [Fe(SBz)(3)(NO)](-) (3), respectively, by ligand displacement. Mononitrosyl species of this kind were previously unknown. These complexes further react with NO (g) to generate the corresponding DNICs, [Fe(SPh)(2)(NO)(2)](-) (4) and [Fe(SBz)(2)(NO)(2)](-) (5), with concomitant reductive elimination of the coordinated thiolate donors. Reaction of [Fe(SR)(4)](2-) complexes with NO(+) proceeds by a different pathway to yield the corresponding dinitrosyl S-bridged Roussin red ester complexes, [Fe(2)(mu-S(t)Bu)(2)(NO)(4)] (2), [Fe(2)(mu-SPh)(2)(NO)(4)] (7) and [Fe(2)(mu-SBz)(2)(NO)(4)] (8). The NO/NO(+) reactivity of an Fe(II) complex with a mixed nitrogen/sulfur coordination sphere was also investigated. The DNIC and red ester species, [Fe(S-o-NH(2)C(6)H(4))(2)(NO)(2)](-) (6) and [Fe(2)(mu-S-o-NH(2)C(6)H(4))(2)(NO)(4)] (9), were generated. The structures of 8 and 9 were verified by X-ray crystallography. The MNIC complex 1 can efficiently deliver NO to iron-porphyrin complexes like [Fe(TPP)Cl], a reaction that is aided by light. Removal of the coordinated NO ligand of 1 by photolysis and addition of elemental sulfur generates higher nuclearity Fe/S clusters.  相似文献   

15.
Synthesis and crystal structure of two Zn(II) dimer complexes with 1-methylcytosine (1-MeC) are reported. In complex [Zn(2)Cl(4)(mu-1-MeC-O2,N3)(2)] (1), two 1-MeC ligands are bridging two ZnCl(2) moieties. In [Zn(2)(1-MeC-N3)(4)(mu-SO(4))(2)].2H(2)O (2), the sulfates act as bridging ligands and 1-MeC are linked via N3 to Zn(II) as terminal ligands. Both complexes represent the first examples of Zn(II)-pyrimidine dimers. The potential biological significance of 1 and 2 is discussed.  相似文献   

16.
The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.  相似文献   

17.
Four new binuclear complexes of formula [M2(bipy)2(BAA)]Cl2 (where M is Pt(II) or Pd(II), bipy is 2,2'-bipyridine, and BAA is a dianion of meso-alpha-alpha'-diaminoadipic acid (DAA) or meso-alpha,alpha'-diaminosuberic acid (DSA) have been synthesized. These complexes have been characterized by chemical analysis and ultraviolet-visible, infrared, and 1H NMR spectroscopy. The mode of binding of ligands in these complexes has been ascertained by infrared and detailed 1H NMR spectroscopy. These complexes are 1:2 electrolyte in conductivity water. They have also been tested against P388 lymphocytic leukemia cells and their target is DNA molecules. [Pt2(bipy)2(DSA)]Cl2, [Pd2(bipy)2(DSA)Cl2, and [Pd2(bipy)2(DAA)]Cl2 show I.D.50 values comparable or lower than cis-diamminedichloroplatinum(II) and [Pt(bipy)(Ala)]Cl. In addition, binding studies of [Pt2(bipy)2(DSA)]Cl2 and [Pd2(bipy)2(DAA)]Cl2 to calf thymus DNA have been carried out and the mode of binding seems to be hydrogen bonding, as suggested earlier for analogous mononuclear amino acid-DNA complexes.  相似文献   

18.
Some new complexes of mefenamic acid with potentially interesting biological activity are described. The complexes of mefenamic acid [Mn(mef)(2)(H(2)O)(2)], 1, [Co(mef)(2)(H(2)O)(2)], 2, [Ni(mef)(2)(H(2)O)(2)], 3, [Cu(mef)(2)(H(2)O)](2), 4 and [Zn(mef)(2)], 5, were prepared by the reaction of mefenamic acid, a potent anti-inflammatory drug with metal salts. Optical and infrared spectral data of these new complexes are reported. Monomeric six-coordinated species were isolated in the solid state for Mn(II), Ni(II) and Co(II), dimeric five-coordinated for Cu(II) and monomeric four-coordinated for Zn(II). In DMF or CHCl(3) solution the coordination number is retained and the coordinated molecules of water are replaced by solvent molecules. The anti-oxidant properties of the complexes were evaluated using the 1,1-diphenyl-2-picrylhydrazyl, DPPH, free radical scavenging assay. The scavenging activities of the complexes were measured and compared with those of the free drug and vitamin C. We have explored their ability to inhibit soybean lipoxygenase, beta-glucuronidase and trypsin- induced proteolysis. The complex [Mn(mef)(2)(H(2)O)(2)] exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean lipogygenase (LOX), properties that are not demonstrated by mefenamic acid. Their inhibitory effects on rat paw edema induced by Carrageenan was studied and compared with those of mefenamic acid. The complex [Zn(mef)(2)] exhibited a strong inhibitory effect at 0.1 mmol/Kg B.W. (81.5 +/- 1.3% inhibition), superior to the inhibition induced by mefenamic acid at the same dose (61.5 +/- 2.3% inhibition). Mefenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse fibroblast L-929 cell line. The copper(II) complex displays against T24, MCF-7 and L-929 cancer cell lines, IC(50) values in a microM range similar to that of the antitumor drug cis-platin and they are considered for further stages of screening in vitro and/or in vivo as agents with potential antitumor activity.  相似文献   

19.
Two asymmetric tridentate copper(II) complexes, [Cu(dppt)Cl(2)].0.25H(2)O (1) (dppt=3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine) and [Cu(pta)Cl(2)] (2) (pta=3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene), have been prepared and characterized by elemental analysis, IR and Fast atomic bombardment mass spectra. Complex 1 has also been structurally characterized. The complexes exist as distorted square pyramid with five co-ordination sites occupied by the tridentate ligand and the two chlorine anions. DNA interaction studies suggest that the ligand planarity of the complex has a significant effect on DNA binding affinity increasing in the order [Cu(dppt)Cl(2)]< [Cu(pta)Cl(2)]. In the presence of ascorbate or glutathione, the two complexes are found to cause significant cleavage of double-strand pBR 322 DNA and [Cu(pta)Cl(2)] exhibited the higher cleaving efficiency.  相似文献   

20.
An interesting series of new platinum complexes has been synthesized by the reaction of Na(2)PtCl(4) with 2-acetyl pyridine thiosemicarbazone, HAcTsc. The new complexes, [Pt(AcTsc)Cl], [Pt(HAcTsc)(2)]Cl(2) and [Pt(AcTsc)(2)], have been characterized by elemental analyses and spectroscopic studies. The crystal structure of the complex [Pt(AcTsc)Cl] has been solved by single-crystal X-ray diffraction. The anion of HAcTsc coordinates in a planar conformation to the central platinum(II) through the pyridyl N, azomethine N and thiolato S atoms. Double intermolecular hydrogen bonds (NH-Cl), pi-pi and weak Pt-Pt and Pt-pi contacts lead to aggregation and to a two-dimensional supramolecular assembly. The antibacterial and antifungal effect of the novel platinum(II) complexes and the related palladium(II) complexes, [Pd(AcTsc)Cl], [Pd(HAcTsc)(2)]Cl(2) and [Pd(AcTsc)(2)], were studied in vitro. The complexes were found to have a completely lethal effect on Gram+ bacteria, while the same complexes showed no bactericidal effect on Gram- bacteria. Additionally, the complexes [Pt(AcTsc)(2)] and [Pd(AcTsc)(2)] showed effective antifungal activity towards yeast. Among these compounds [33], the most effective in inducing antitumour and cytogenetic effects are the complexes [Pt(AcTsc)(2)] and [Pd(AcTsc)(2)] while the rest, display marginal cytogenetic and antitumour effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号