首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Song MK  Lee SW  Suh YS  Lee KJ  Sung YC 《Journal of virology》2000,74(6):2920-2925
The induction of strong cytotoxic T-lymphocyte (CTL) and humoral responses appear to be essential for the elimination of persistently infecting viruses, such as hepatitis C virus (HCV). Here, we tested several vaccine regimens and demonstrate that a combined vaccine regimen, consisting of HCV E2 DNA priming and boosting with recombinant E2 protein, induces the strongest immune responses to HCV E2 protein. This combined vaccine regimen augments E2-specific immunoglobulin G2a (IgG2a) and CD8(+) CTL responses to a greater extent than immunizations with recombinant E2 protein and E2 DNA alone, respectively. In addition, the data showed that a protein boost following one DNA priming was also effective, but much less so than those following two DNA primings. These data indicate that sufficient DNA priming is essential for the enhancement of DNA encoded antigen-specific immunity by a booster immunization with recombinant E2 protein. Furthermore, the enhanced CD8(+) CTL and IgG2a responses induced by our combined vaccine regimens are closely associated with the protection of BALB/c mice from challenge with modified CT26 tumor cells expressing HCV E2 protein. Together, our results provide important implications for vaccine development for many pathogens, including HCV, which require strong antibody and CTL responses.  相似文献   

2.
To study the effect of genetic immunization on transgenic expression of hepatitis C virus (HCV) proteins, we evaluated the immunological response of HCV transgenic mice to HCV expression plasmids. FVB/n transgenic mice expressing HCV structural proteins (core, E1, and E2) and wild-type (WT) FVB/n mice were immunized intramuscularly with plasmids expressing core (pHCVcore) or core/E1/E2 (pHCVSt). After immunization, HCV-specific humoral and cellular immune response was studied. Both WT and transgenic mice immunized with either HCV construct produced antibodies and exhibited T-cell proliferative responses against core or envelope. In WT mice immunized with pHCVSt, cytotoxic T-lymphocyte (CTL) activities were detected against E2 but not against core or E1, whereas strong CTL activities against core could be detected in WT mice immunized with pHCVcore. In pHCVSt-immunized, transgenic mice, CTL activities against the core or envelope were completely absent, but core-specific CTL activities could be detected in pHCVcore-immunized transgenic mice. A similar pattern of immune responses was also observed in other mouse strains, including a transgenic line expressing human HLA-A2.1 molecules (AAD mice). Despite the presence of a peripheral cellular immunity against HCV, no liver pathology or lymphocytic infiltrate was observed in these transgenic mice. Our study suggests a hierarchy of CTL response against the HCV structural proteins (E2 > core > E1) in vivo when the proteins are expressed as a polyprotein. The HCV transgenic mice can be induced by DNA immunization to generate anti-HCV antibodies and anticore CTLs. However, they are tolerant at the CTL level against the E2 protein despite DNA immunization.  相似文献   

3.
Prophylactic hepatitis C virus (HCV) vaccine trials with human volunteers are pending. There is an important need for immunological end points which correlate with vaccine efficacy and which do not involve invasive procedures, such as liver biopsies. By using a multicomponent DNA priming-protein boosting vaccine strategy, na?ve chimpanzees were immunized against HCV structural proteins (core, E1, and E2) as well as a nonstructural (NS3) protein. Following immunization, exposure to the heterologous HCV 1b J4 subtype resulted in a peak of plasma viremia which was lower in both immunized animals. Compared to the na?ve infection control and nine additional historical controls which became chronic, vaccinee 2 (Vac2) rapidly resolved the infection, while the other (Vac1) clearly controlled HCV infection. Immunization induced antibodies, peptide-specific gamma interferon (IFN-gamma), protein-specific lymphoproliferative responses, IFN-gamma, interleukin-2 (IL-2), and IL-4 T-helper responses in both vaccinees. However, the specificities were markedly different: Vac2 developed responses which were lower in magnitude than those of Vac1 but which were biased towards Th1-type cytokine responses for E1 and NS3. This proof-of-principle study in chimpanzees revealed that immunization with a combination of nonstructural and structural antigens elicited T-cell responses associated with an alteration of the course of infection. Our findings provide data to support the concept that the quality of the response to conserved epitopes and the specific nature of the peripheral T-helper immune response are likely pivotal factors influencing the control and clearance of HCV infection.  相似文献   

4.
Hepatitis C virus (HCV) chronic infection is characterized by low or undetectable cellular immune responses against HCV antigens. Some studies have suggested that HCV proteins manipulate the immune system by suppressing the specific antiviral T-cell immunity. We have previously reported that the expression of HCV core and E1 proteins (CE1) in dendritic cells (DC) impairs their ability to prime T cells in vitro. We show here that immunization of mice with immature DC transduced with an adenovirus encoding HCV core and E1 antigens (AdCE1) induced lower CD4(+)- and CD8(+)-T-cell responses than immunization with DC transduced with an adenovirus encoding NS3 (AdNS3). However, no differences in the strength of the immune response were detected when animals were immunized with mature DC subsequently transduced with AdCE1 or AdNS3. According to these findings, we observed that the expression of CE1 in DC inhibited the maturation caused by tumor necrosis factor alpha or CD40L but not that induced by lipopolysaccharide. Blockade of DC maturation by CE1 was manifested by a lower expression of maturation surface markers and was associated with a reduced ability of AdCE1-transduced DC to activate CD4(+)- and CD8(+)-T-cell responses in vivo. Our results suggest that HCV CE1 proteins modulate T-cell responses by decreasing the stimulatory ability of DC in vivo via inhibition of their physiological maturation pathways. These findings are relevant for the design of therapeutic vaccination strategies in HCV-infected patients.  相似文献   

5.
In spite of extensive research, no effective vaccine against hepatitis C virus (HCV) has been developed so far. DNA immunization is a potent technique of vaccine design strongly promoting the cellular arm of immune response. The genes encoding nonstructural HCV proteins (NS2-NS5B) are promising candidates for vaccine development. NS5A is a protein involved in viral pathogenesis, in the induction of immune response, and probably in viral resistance to interferon treatment. The objective of this study was to construct a DNA vaccine encoding NS5A protein and evaluate its immunogenicity. A plasmid encoding a full-size NS5A protein was produced using the pcDNA3.1 (+) vector for eukaryotic expression system. The expression of the NS5A gene was confirmed by immunoperoxidase staining of the transfected eukaryotic cells with anti- NS5A monoclonal antibodies. Triple immunization of mice with the plasmid vaccine induced a pronounced cellular immune response against a broad spectrum of NS5A epitopes as assessed by T-cell proliferation and secretion of antiviral cytokines IFN-γ and IL-2. In T-cell stimulation in vitro experiments, NS5A-derived antigens were modeled by synthetic peptides, recombinant proteins of various genotypes, and phages carrying exposed NS5A peptides. A novel immunomodulator Immunomax showed high adjuvant activity in DNA immunization. The data obtained indicate that the suggested DNA construct has a strong potential in the development of the gene vaccines against hepatitis C.  相似文献   

6.
研究GM-CSF在DV、HCV等几种黄病毒DNA疫苗诱导的免疫应答中的作用,并分析其作为黄病毒DNA疫苗佐剂的可能性。构建各种真核表达质粒,抽提质粒DNA,分组免疫小鼠,通过ELISA及间接免疫荧光染色检测小鼠血清抗体的动态水平。DV1及DV2prM/E核酸疫苗与GM-CSF质粒共接种的佐剂组小鼠血清抗体水平低于无佐剂的疫苗组,即GM-CSF显示了一定的免疫抑制作用,其中以DV1prM/E核酸疫苗更为显著;而在HCVC及E1蛋白核酸疫苗中,GM-CSF则具有一定免疫增强作用。GM-CSF作为疫苗佐剂,其作用具有复杂的多样性,因抗原的不同可能会呈现免疫提升或免疫抑制,因此选择其作为核酸疫苗佐剂时需慎重。  相似文献   

7.
Vectors expressing the first 58 amino acids of the hepatitis C virus (HCV) nucleocapsid alone or as a fusion protein with the middle (pre-S2 and S) or major (S) surface antigens of hepatitis B virus (HBV) were constructed. Intramuscular immunization of BALB/c mice with the chimeric constructs in the form of naked DNA elicited humoral responses to antigens from both viruses within 2 to 6 weeks postinjection. No anti-HCV responses were obtained in mice immunized with the vector expressing the HCV sequence in the nonfusion context. Sera from chimera-injected mice specifically recognized both HCV capsid and HBV surface antigens in enzyme-linked immunosorbent assay and immunoblot testing. Anti-HCV serum titers formed plateaus of approximately 1:3,000; these remained stable until the end of the study (18 weeks postinfection). Anti-HBV immune responses were found to be lower in the chimera-injected animals (< 200 mIU/ml) than in those immunized with the native HBV vector (> 2,000 mIU/ml). This is the first report of the use of DNA-based immunization for the generation of immune responses to an HCV protein. In addition, these findings show that it is possible to elicit responses to viral epitopes from two distinct viruses via DNA immunization with chimeric vectors.  相似文献   

8.
Effective innate and adaptive immune responses are essential for the control of hepatitis C virus (HCV) infection. Indeed, elimination of HCV during acute infection correlates with an early induction of innate and a delayed induction of adaptive immune responses. However, in the majority of acutely HCV-infected individuals, these responses are insufficient to clear the virus and persistence develops. In recent years, different mechanisms responsible for the failure of innate and adaptive immune responses have been identified. These include the proteolytic cleavage of molecules playing key roles in the induction of the interferon response, manipulation of interferon-induced effector proteins, interference with CD8+ T-cell function or immune escape in T- and B-cell epitopes. In this review, we discuss the possible roles of innate and adaptive immune responses in HCV clearance and the different evasion strategies used by the virus to escape these immune responses.  相似文献   

9.
Clearance of hepatitis C virus (HCV) infection in humans and chimpanzees is thought to be associated with the induction of strong T-cell responses. We studied four chimpanzees infected with HCV derived from an infectious full-length HCV genotype 1b cDNA. Two of the chimpanzees cleared the infection to undetectable levels for more than 12 months of follow-up; the other two became persistently infected. Detailed analyses of HCV-specific immune responses were performed during the courses of infection in these chimpanzees. Only weak and transient T helper responses were detected during the acute phase in all four chimpanzees. A comparison of the frequency of gamma interferon (IFN-gamma)-producing CD4(+) and CD8(+) T cells in peripheral blood by ELISpot assay did not reveal any correlation between viral clearance and T-cell responses. In addition, analyses of IFN-gamma, IFN-alpha, and interleukin-4 mRNA levels in liver biopsies, presumably indicative of intrahepatic T-cell responses, revealed no distinct pattern in these chimpanzees with respect to infection outcome. The present study suggests that the outcome of HCV infection in chimpanzees is not necessarily attributable to HCV sequence variation and that chimpanzees may recover from HCV infection by mechanisms other than the induction of readily detectable HCV-specific T-cell responses.  相似文献   

10.
Induction of mucosal anti-human immunodeficiency virus type 1 (HIV-1) T-cell responses in males and females will be important for the development of a successful HIV-1 vaccine. An HIV-1 envelope peptide, DNA plasmid, and recombinant modified vaccinia virus Ankara (rMVA) expressing the H-2D(d)-restricted cytotoxic T lymphocyte P18 epitope were used as immunogens to test for their ability to prime and boost anti-HIV-1 T-cell responses at mucosal and systemic sites in BALB/c mice. We found of all prime-boost combinations tested, an HIV-1 Env peptide subunit mucosal prime followed by systemic (intradermal) boosting with rMVA yielded the maximal induction of gamma interferon (IFN-gamma) spot-forming cells in the female genital tract and colon. However, this mucosal prime-systemic rMVA boost regimen was minimally immunogenic for the induction of genital, colon, or lung anti-HIV-1 T-cell responses in male mice. We determined that a mucosal Env subunit immunization could optimally prime an rMVA boost in female but not male mice, as determined by the magnitude of antigen-specific IFN-gamma responses in the reproductive tracts, colon, and lung. Defective mucosal priming in male mice could not be overcome by multiple mucosal immunizations. However, rMVA priming followed by an rMVA boost was the optimal prime-boost strategy for male mice as determined by the magnitude of antigen-specific IFN-gamma responses in the reproductive tract and lung. Thus, prime-boost immunization strategies able to induce mucosal antigen-specific IFN-gamma responses were identified for male and female mice. Understanding the cellular and molecular basis of gender-determined immune responses will be important for optimizing induction of anti-HIV-1 mucosal immune responses in both males and females.  相似文献   

11.
建立一种可高效诱导细胞免疫应答 ,对丙型肝炎病毒 (HCV)感染可能起预防和治疗作用的DNA疫苗。将小鼠Flt3配体 (FL)信号肽和胞外段cDNA插入结构优化的HCV核心 包膜E2融合抗原DNA疫苗pST CE2t,构建成pST CE2t FL。将pST CE2t FL转染COS7细胞 ,Westernblot和ELISA检测表明该重组质粒能表达HCV核心 包膜E2融合抗原和可溶性小鼠FL。分别将pST CE2t、pST CE2t FL和空载体pCI neo肌肉注射接种BALB c小鼠 ,检测小鼠的体液和细胞免疫应答。结果表明两种DNA结构均能在小鼠体内诱生细胞和体液免疫应答 ,但pST CE2t诱导的体液免疫应答强于pST CE2t FL ,而后者诱导的细胞免疫应答明显强于前者。FL能明显增强HCV核心 包膜E2融合抗原DNA疫苗诱导的细胞免疫应答 ,对于发展HCV预防和治疗性疫苗有潜在的应用价值。  相似文献   

12.
Mice immunized with the regulatory genes nef, rev, and tat from human immunodeficiency virus type 1 developed both humoral and cellular immune responses to the gene products Nef, Rev, and Tat. This study demonstrates that it is feasible to induce immune reactions to all of these regulatory gene products. Humoral responses were seen after DNA boosts, while potent T-cell proliferative responses were noted already after a single immunization. A Th1-directed immune response was demonstrated early after immunization. A 3- to 75-fold-stronger T-cell response was seen in animals receiving DNA epidermally compared to that in animals receiving intramuscular injections. Nef, Rev, and Tat putative B- and T-cell epitopes were clearly mapped by using peptides derived from the regulatory proteins and were similar to those which are detected in human immunodeficiency virus infection. Although immunization by the Nef, Rev, and Tat proteins raised high immunoglobulin G titers in serum, the epitope spreading appeared broader after DNA immunization. The combination of all of these regulatory genes together with two genes for structural proteins, the envelope and gag genes, demonstrated that a combined approach is feasible in that reactivities to all antigens persisted or were even augmented. No interference between plasmids was noted.  相似文献   

13.
We describe an improved genetic immunization strategy for eliciting a full spectrum of anti-hepatitis C virus (HCV) envelope 2 (E2) glycoprotein responses in mammals through electrical gene transfer (EGT) of plasmid DNA into muscle fibers. Intramuscular injection of a plasmid encoding a cross-reactive hypervariable region 1 (HVR1) peptide mimic fused at the N terminus of the E2 ectodomain, followed by electrical stimulation treatment in the form of high-frequency, low-voltage electric pulses, induced more than 10-fold-higher expression levels in the transfected mouse tissue. As a result of this substantial increment of in vivo antigen production, the humoral response induced in mice, rats, and rabbits ranged from 10- to 30-fold higher than that induced by conventional naked DNA immunization. Consequently, immune sera from EGT-treated mice displayed a broader cross-reactivity against HVR1 variants from natural isolates than sera from injected animals that were not subjected to electrical stimulation. Cellular response against E2 epitopes specific for helper and cytotoxic T cells was significantly improved by EGT. The EGT-mediated enhancement of humoral and cellular immunity is antigen independent, since comparable increases in antibody response against ciliary neurotrophic factor or in specific anti-human immunodeficiency virus type 1 gag CD8(+) T cells were obtained in rats and mice. Thus, the method described potentially provides a safe, low-cost treatment that may be scaled up to humans and may hold the key for future development of prophylactic or therapeutic vaccines against HCV and other infectious diseases.  相似文献   

14.
Interleukin-12 (IL-12), consisting of p40 and p35 subunits, produces both p70 heterodimer and free p40. p70 is essential for the induction of T-helper 1 (Th1) and cytotoxic T-cell (CTL) immunity, whereas p40 inhibits p70-mediated function. Here, we found that mutations introduced into N-glycosylation sites (N220 of murine p40 and N222 of human p40) reduced secretion of p40 but not p70. Co-immunization of N220 mutant mIL-12 gene with hepatitis C virus (HCV) E2 DNA significantly enhanced long-term E2-specific CD8+ T-cell response and protection against tumor challenge compared with that of wild type. Our results indicate that the ratio of p70 to p40 is important for generating sustained long-term cell-mediated immunity. Thus, the mutant IL-12 could be utilized for the development of DNA vaccines as an adjuvant for the generation of long-term memory T-cell responses.  相似文献   

15.
We studied immune responses to hepatitis C virus (HCV) genes delivered as DNA encoding the entire HCV protein coding genome in two polycistronic plasmids encoding HCV capsid-E1-E2-NS2-NS3 and HCV NS3-NS4-NS5 in HLA-A2.1-transgenic mice. Immune responses to HCV DNA prime and recombinant canarypox virus boost were also studied with the above constructs. At 8 weeks after a canarypox virus boost, the DNA prime/canarypox virus boosting regimen induced potent cellular immune responses to HCV structural and nonstructural proteins on target cells expressing the HLA-A2.1 allele. High frequencies of gamma interferon-secreting cells, as detected by enzyme-linked immunospot assay, were obtained in response to several endogenously expressed HCV proteins. We also observed cytotoxic-T-lymphocyte reactivity in response to endogenously expressed HCV proteins in fresh spleen cells without in vitro expansion. Upon challenge with a recombinant vaccinia virus expressing HCV proteins at 2 months postimmunization, the HCV DNA prime/canarypox virus-immunized mice showed a complete reduction in vaccinia virus titers compared to HCV DNA prime/boost- and mock-immunized controls. Immune responses were still detectable 4 months after canarypox virus boost in immunized mice. Interestingly, at 10 months postimmunization (8 months after canarypox virus boost), the protection in HCV DNA prime/boost-immunized mice against recombinant HCV-vaccinia virus challenge was higher than that observed in HCV DNA prime/canarypox virus boost-immunized mice.  相似文献   

16.
We have previously demonstrated the ability of the vaccine vectors based on replicon RNA of the Australian flavivirus Kunjin (KUN) to induce protective antiviral and anticancer CD8+ T-cell responses using murine polyepitope as a model immunogen (I. Anraku, T. J. Harvey, R. Linedale, J. Gardner, D. Harrich, A. Suhrbier, and A. A. Khromykh, J. Virol. 76:3791-3799, 2002). Here we showed that immunization of BALB/c mice with KUN replicons encoding HIV-1 Gag antigen resulted in induction of both Gag-specific antibody and protective Gag-specific CD8+ T-cell responses. Two immunizations with KUNgag replicons in the form of virus-like particles (VLPs) induced anti-Gag antibodies with titers of > or =1:10,000. Immunization with KUNgag replicons delivered as plasmid DNA, naked RNA, or VLPs induced potent Gag-specific CD8+ T-cell responses, with one immunization of KUNgag VLPs inducing 4.5-fold-more CD8+ T cells than the number induced after immunization with recombinant vaccinia virus carrying the gag gene (rVVgag). Two immunizations with KUNgag VLPs also provided significant protection against challenge with rVVgag. Importantly, KUN replicon VLP vaccinations induced long-lasting immune responses with CD8+ T cells able to secrete gamma interferon and to mediate protection 6 to 10 months after immunization. These results illustrate the potential value of the KUN replicon vectors for human immunodeficiency virus vaccine design.  相似文献   

17.
The induction of human immunodeficiency virus (HIV)-specific T-cell responses is widely seen as critical to the development of effective immunity to HIV type 1 (HIV-1). Plasmid DNA and recombinant fowlpox virus (rFPV) vaccines are among the most promising safe HIV-1 vaccine candidates. However, the immunity induced by either vaccine alone may be insufficient to provide durable protection against HIV-1 infection. We evaluated a consecutive immunization strategy involving priming with DNA and boosting with rFPV vaccines encoding common HIV-1 antigens. In mice, this approach induced greater HIV-1-specific immunity than either vector alone and protected mice from challenge with a recombinant vaccinia virus expressing HIV-1 antigens. In macaques, a dramatic boosting effect on DNA vaccine-primed HIV-1-specific helper and cytotoxic T-lymphocyte responses, but a decline in HIV-1 antibody titers, was observed following rFPV immunization. The vaccine regimen protected macaques from an intravenous HIV-1 challenge, with the resistance most likely mediated by T-cell responses. These studies suggest a safe strategy for the enhanced generation of T-cell-mediated protective immunity to HIV-1.  相似文献   

18.
19.
Wu L  Kong WP  Nabel GJ 《Journal of virology》2005,79(13):8024-8031
A variety of gene-based vaccination approaches have been used to enhance the immune response to viral pathogens. Among them, the ability to perform heterologous immunization by priming with DNA and boosting with replication-defective adenoviral (ADV) vectors encoding foreign antigens has proven particularly effective in eliciting enhanced cellular and humoral immunity compared to either agent alone. Because adenoviral vector immunization alone can elicit substantial cellular and humoral immune responses in a shorter period of time, we asked whether the immune response induced by the prime-boost immunization was different from adenoviral vaccines with respect to the potency and breadth of T-cell recognition. While DNA/ADV immunization stimulated the CD8 response, it was directed to the same epitopes in Gag and Env immunogens of human immunodeficiency virus as DNA or ADV alone. In contrast, the CD4 response to these immunogens diversified after DNA/ADV immunization compared to each vector alone. These findings suggest that the diversity of the CD4 immune response is increased by DNA/ADV prime-boost vaccination and that these components work synergistically to enhance T-cell epitope recognition.  相似文献   

20.
IL-23 is a heterodimeric cytokine consisting of p19 and the p40 subunit of IL-12. IL-23 has been shown to possess IL-12-like biological activities, but is different in its capacity to stimulate memory T cells in vitro. In this study, we investigated whether IL-23 could influence envelope protein 2 (E2)-specific cell-mediated immunity induced by immunization of hepatitis C virus E2 DNA. We found that IL-23 induced long-lasting Th1 and CTL immune responses to E2, which are much stronger than IL-12-mediated immune responses. Interestingly, IL-23N220L, an N-glycosylation mutant showing reduced expression of excess p40 without changing the level of IL-23, exhibited a higher ratio of IFN-gamma- to IL-4-producing CD4(+) T cell frequency than did wild-type IL-23, suggesting a negative regulatory effect of p40 on Th1-prone immune response induced by IL-23. These data suggest that IL-23, particularly IL-23N220L, would be an effective adjuvant of DNA vaccine for the induction of durable Ag-specific T cell immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号