首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic pyrophosphatase has been isolated from the thermoacidophilic archaebacterium Thermoplasma acidophilum. The enzyme was purified to electrophoretic homogeneity by combining ion-exchange and affinity-chromatographic separations. This soluble pyrophosphatase probably consists of six identical subunits, since SDS/PAGE gave an estimate of about 22 kDa for a single subunit and size-exclusion chromatography under non-denaturing conditions indicates a molecular mass of 110 +/- 5 kDa. The two most prominent catalytic features of this enzyme are the absolute requirement for divalent cations for catalytic action, Mg2+ conferring the highest activity, and the pronounced specificity for PPi. The catalytic behavior apparently follows simple Michaelis-Menten kinetics with a Km of about 7 microM for PPi and a specific activity of about 1200 U/mg at 56 degrees C. Surprisingly, maximum activity could be observed at 85 degrees C which is more than 20 degrees C above the temperature for optimal growth. Several cytoplasmic extracts of eubacteria and archaebacteria have been probed with a polyclonal antiserum raised against the purified archaebacterial protein. The only noticeable cross-reactivity could be detected with an extract from the methanogen Methanosarcina barkeri although this probably does not reflect the inferred phylogenetic relationship between methanogens and Thermoplasma acidophilum.  相似文献   

2.
Adenylate cyclase of Escherichia coli K12 has been purified 17,000-fold to near homogeneity from a 5-fold overproducing strain. One major band of Mr = 92,000 and several minor bands are seen on sodium dodecyl sulfate-polyacrylamide electrophoresis of the purest fractions. Identification of the enzyme with the 92,000-Da protein is based on the correlation of this band with activity when highly purified enzyme is eluted from ADP-sepharose columns. The native enzyme has a molecular weight of 95,000 determined by gel filtration, showing that the enzyme is active as a monomer. The purest enzyme has a specific activity of 700 nmol min-1 mg-1, indicating a turnover number of about 100 min-1. Our data indicate that there are only about 15 molecules of the enzyme in wild type cells of E. coli. In crude extracts, over 80% of the activity is soluble after centrifugation at 100,000 x g, indicating the enzyme is soluble or, at most, loosely membrane bound. The enzyme is only moderately stable in crude extracts and becomes more unstable as purification proceeds. Activity is stabilized by ATP, or at -20 degrees C as an ammonium sulfate precipitate or in 50% glycerol. The enzyme has an absolute requirement for divalent cations. Maximum activity with Mg2+ is reached at 30 mM. Mn2+ is a good substitute; Co2+ activates well at low concentrations but becomes inhibitory at high concentrations; and Ca2+ is a potent inhibitor in the presence of Mg2+. The isoelectric point of the enzyme is 6.1, and its pH optimum is 8.5. The enzyme is inhibited by its substrate, with a Km of about 1 mM and a Ki of about 1.5 mM, and is noncompetitively inhibited by PPi, ADP, GTP, and a number of other compounds. The data suggest that dissociation of PPi from the first enzyme-product complex is the rate-limiting step in the reaction. Activation of the enzyme, inferred to occur in vivo, could be produced by a postulated regulatory effector which speeds release of PPi from the enzyme-product complex.  相似文献   

3.
A newly detected amide synthetase, designated 4-methyleneglutamine synthetase, has been partially purified from extracts of 5- to 7-day germinated peanut cotyledons (Arachis hypogaea). Purification steps include fractionation with protamine sulfate and ammonium sulfate followed by column chromatography on Bio-Gel and DEAE-cellulose; synthetase purified over 300-fold is obtained. The enzyme has a molecular weight estimated to be approximately 250,000 and a broad pH optimum with maximal activity at approximately pH 7.5. Maximal rates of activity are obtained with NH+4 (Km = 3.7 mM) as the amide donor and the enzyme is highly specific for 4-methylene-L-glutamic acid (Km = 2.7 mM) as the amide acceptor. Product identification and stoichiometric studies establish the reaction catalyzed to be: 4-methyleneglutamic acid + NH4+ + ATP Mg2+----4-methyleneglutamine + AMP + PPi. PPi accumulates only when F- is added to inhibit pyrophosphatase activity present in synthetase preparations. This enzymatic activity is completely insensitive to the glutamine synthetase inhibitors, tabtoxinine-beta-lactam and F-, and is only partially inhibited by methionine sulfoximine. It is, however, inhibited by added pyrophosphate in the presence of F- as well as by certain divalent metal ions (other than Mg2+) including Hg2+, Ni2+, Mn2+, and Ca2+. All data obtained indicate that this newly detected synthetase is distinct from the well-known glutamine and asparagine synthetases.  相似文献   

4.
A polyphosphatase with the specific activity 2.2 U/mg was purified to apparent homogeneity from a soluble preparation of mitochondria of Saccharomyces cerevisiae. The polyphosphatase is a monomeric protein of approximately 41 kD. The purified enzyme hydrolyzes polyphosphates with an average chain length of 9 to 208 phosphate residues to the same extent, but its activity is approximately 2-fold higher with tripolyphosphate. ATP, PPi, and p-nitrophenyl phosphate are not substrates of this enzyme. The apparent Km values are 300, 18, and 0.25 microM obtained at hydrolysis of polyphosphates with a chain length of 3, 15, and 188 phosphate residues, respectively. Several divalent cations stimulated the enzyme activity 1.2-27-fold (Mg2+ = Co2+ = Mn2+ > Zn2+). Determination of the protein N-terminal sequence and its comparison with the EMBL data library indicates that the soluble polyphosphatase of mitochondria of S. cerevisiae is not encoded by the gene of the major yeast polyphosphatase PPX1.  相似文献   

5.
Soluble low Km 5'-nucleotidase from human seminal plasma has been purified to homogeneity by one affinity and two gel-filtration chromatographic steps. The pure enzyme had a specific activity of 2000 nmol min-1 mg-1. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified low Km 5'-nucleotidase revealed a single polypeptide band of 40 +/- 7 kDa and a tetrameric structure of 160 +/- 10 kDa has been proposed for the native enzyme. The kinetic properties of low Km 5'-nucleotidase have been determined and rather unique characteristics have been found for this soluble low Km 5'-nucleotidase: the substrate efficiency was slightly higher for IMP with an optimum pH at 7.5; the enzyme showed an absolute dependence on Mg2+ ions. Ca2+ could replace Mg2+ ions for activity while other divalent cations could not substitute for Mg2+; the enzymes were equally activated by ATP and ADP up to 0.1 mM concentrations. At higher concentrations up to 1 mM, ADP was still an activator while ATP caused a gradual decrease of activation to the native activity. This effect could not be related to the Mg-ATP = complexes since the enzymic preparation Mg(2+)-free still showed the same biphasic pattern of activation.  相似文献   

6.
The effects of ATP and divalent cations on a divalent cation-independent phosphorylase phosphatase of Mr = 35,000 (phosphatase S) purified from canine cardiac muscle have been studied. The enzyme can be rapidly inactivated by ATP or other nucleoside di- and triphosphates and PPi, but not by AMP, adenosine, adenine, Pi, EDTA, ethylene glycol bis(beta-aminoethyl ether)N,N' -tetraacetic acid, 1,10-phenanthroline, or 8-hydroxyquinoline. After removing the inactivating agent, such as ATP or PPi, by gel filtraiton followed by exhaustive dialysis, the inactivated enzyme (apophosphatase S) can be reactivated by preincubating with Mn2+ or Co2+, but not with Mg2+, Ca2+, Ni2+, Zn2+, Fe2+, Cu2+, Ba2+, Hg2+, Pb2+, or Cd2+. The Mn2+ -reactivated enzyme, which is less active than the Co2+ -reactivated enzyme, can be again inactivated by preincubating with ATP. The present findings indicate that phosphatase S contains a tightly bound divalent cation, probably Mn2+, in the active site. ATP and PPi, due to their structural similarity to the phosphoprotein substrate and their ability to chelate metal ions, can readily enter the active site to remove the divalent cation(s) essential for the catalytic function. The present findings also indicate that phosphatase S, a common catalytic subunit of several larger molecular forms of nospecific phosphoprotein phosphatase in cardiac muscle, can exist in two interconvertible forms, a metallized form (active) and a demetallized form (inactive). ATP and metal ions may regulate this class of isozymes by mediating the interconversions.  相似文献   

7.
The interaction between Penicillium notatum phospholipase B and divalent cations such as Ca2+ and Mg2+ was studied. When the purified enzyme, present at concentrations of submicrogram to microgram per ml, was incubated with submillimolar to millimolar concentrations of CaCl2 or MgCl2, the enzymatic activity was remarkably decreased (to no more than 30% of original activity, when the enzyme was incubated with 2 mM CaCl2 for 15 min). The inhibitory effect of divalent cations was reversible, since dialysis against a metal chelator, such as EDTA or EGTA, substantially restored the enzymatic activity. Atomic absorption analysis showed the purified enzyme molecule to be present in a complex with Ca2+ at a ratio approaching 1:1, and this Ca2+ binding was shown to be extremely tight, since repeated dialyses of the enzyme molecules against EDTA or EGTA could remove the divalent cations only in a gradual manner. During this process, the enzyme activity increased also gradually. The remnant fraction of tightly bound Ca2+ was released from the enzyme molecule after the denaturation of the enzyme by treatment with guanidine hydrochloride, and the apoenzyme recovered its substantial activity after removal of the denaturing agent by dialysis. On the other hand, the content of Mg2+ in the purified enzyme molecule was lower than that of Ca2+, and the association of Mg2+ with the enzyme was much weaker in comparison to that of Ca2+. Atomic absorption analysis of the enzyme exposed to exogenous Ca2+ showed a fast removal, by dialysis, of unbound and weakly bound divalent cation, followed by a gradual removal of endogenous Ca2+ and a concomitant increase of enzymatic activity, which are similar to data obtained for the purified enzyme. Results shown in this report suggest some regulatory roles of divalent cations, especially of Ca2+, in the enzymatic function of P. notatum phospholipse B.  相似文献   

8.
cGMP-dependent protein kinase from bovine lung has been purified to homogeneity using 8-(2-aminoethyl)-amino adenosine 3':5'-monophosphate/Sepharose. Conditions for adsorption of holoenzyme to the affinity chromatography media followed by competitive ligand elution with cGMP have been determined. The holoenzyme of 150,000 molecular weight is composed of two 74,000 molecular weight subunits which are linked in part by disulfide bridges. Two moles of cGMP are bound per mol of holoenzyme compatible with 1 mol of cGMP/monomer. Dissociation of subunits does not occur upon cGMP binding and protein kinase activation. cGMP-dependent protein kinase has an isoelectric point of 5.4 and a Stokes radius of 50 A. The enzyme is asymmetric with an f/f0 of 1.42 and an axial ratio of 7.4. Determination of enzyme activity at varying concentrations of ATP revealed that cGMP increased the Vmax for ATP without significant effect on the Km. The purified enzyme was maximally active at 5 mM Mg2+; other divalent cations could not substitute for Mg2+. In the presence of Mg2+, strong inhibitory effects of other cations were observed with Mn2+, greater than Zn2+, greater than Co2+ greater than Ca2+. Although maximal cGMP-dependence was observed at pH 5.7 to 7.0, basal activity rose at higher pH values to approach activity observed with cGMP. A molecular model comparing cGMP-dependent protein kinase with cAMP-dependnet protein kinase is presented.  相似文献   

9.
We have shown a dual role for Mg2+ in the hydrolysis of PPi catalysed by inorganic pyrophosphatase (PPase; EC 3.6.1.1) of Streptococcus faecalis; Mg2+ is necessary for the formation of the substrates, Mg1PPi2- and Mg2PPi0, and it also acts as an allosteric activator [Lahti + Jokinen (1985) Biochemistry 24, 3526-3530]. No activity can be observed with S. faecalis PPase in the absence of bivalent cations, which indicates that free PPi cannot serve as a substrate for this enzyme. However, significant activities were observed in the presence of spermine and spermidine, even though no bivalent cations were present. It was shown by particle-induced gamma-ray emission and particle-induced X-ray-emission analysis that the polyamines used were not contaminated with Mg2+ or any other bivalent cations that could support PPase activity. Hence it is obvious that polyamines are able to form a complex with PPi that serves as a substrate for PPase. The apparent stability constants for the 1:1 adducts of spermine and spermidine were estimated by a resin competition method. The values obtained at pH 7.5 were 2.7 X 10(3) M-1 and 6.4 X 10(2) M-1 respectively. Kinetic results further suggested that polyamines can also substitute for Mg2+ as an activator in vitro. The physiological significance of these polyamine effects were discussed.  相似文献   

10.
Inorganic pyrophosphatase (pyrophosphate phosphohydrolase, EC 3.6.1.1) from human erythrocyte hemolysates has been purified up to 10 000-fold. The purified enzyme is homogenous and has a specific activity of 79.75 mumol PPi hydrolysed.min-1.mg-1 at pH 8 and 37 degrees C. It was confirmed that it is a dimer with a molecular weight of 42 000, composed of two identical protomers. From kinetic studies, it is proposed that human erythrocyte inorganic pyrophosphatase activity depends on free Mg2+ concentration in different ways. This ion constitutes part of the substrate (the Mg.PPi complex; Km = 1.4.10(-4) M) and probably acts as an allosteric activator (kinetic activation constant: KMg2+a = 7.5.10(-4) M). Equilibrium binding studies performed in the absence of PPi showed 4 binding sites for Mg2+, all having the same high affinity (dissociation constant: KMg2+d = 4.10(-6) M). Since the concentration of free Mg2+ in red blood cells is very low and may vary with the oxygenation state, it is likely that in vivo erythrocyte pyrophosphatase activity is regulated.  相似文献   

11.
A soluble inorganic pyrophosphatase from photolithoautotrophically grown Rhodopseudomonas palustris was purified to a state of apparent homogeneity applying high resolving liquid chromatography steps. Values of 65 500 and 64 500 were calculated for the relative molecular mass under non-dissociating conditions employing gel filtration and high-performance liquid chromatography, respectively. Dissociation sodium dodecyl sulfate gel electrophoresis resulted in a value of 32 000, indicating that the enzyme is composed of two subunits of equal molecular mass. Isoelectric focusing revealed a pI value of 4.7. The purified enzyme was specific for PPi and the activity was modified by divalent cations. Ca2+, Mn2+, Mg2+ and Co2+ were potent activators at a concentration ratio of [Me2+]/[PPi] less than 1. Ca2+ turned out to be the most potent activator. Free Me2+ was inhibitory on the PPiase activity. The (Me-PPi) complex is regarded as the functional substrate. Km and Ki values of the metal activation and inhibition were determined. An activation energy of Ea = 14.4 kJ/mol was derived from Arrhenius plots for the enzymatic reaction.  相似文献   

12.
An endopeptidase was purified and characterized from green leaves of cucumber (Cucumis sativus L. suyo). The purified enzyme, a basic amino acid-specific endopeptidase with a pI of 5.0, was a monomeric protein of 80 kDa whose pH optimum was 9.5. Inhibitor analysis suggested that it was a serine endopeptidase and contained sulfhydryl groups essential for catalytic activity. Analysis of internal amino acid sequences of the endopeptidase showed no significant similarity to other proteins. Its activity was inhibited by L-Arg and guanidino compounds having high hydrophobicity, as well as divalent cations such as Mg2+ and Ca2+. The K(i) values of L-Arg and Mg2+, which are also likely in vivo inhibitors, were 3.5 and 10 mM, respectively. Inhibition by L-Arg and Mg2+ was additive, and more than 70% of the activity was reversibly inhibited under their physiologically significant concentrations. These results suggest that the enzyme is possibly regulated by L-Arg and/or guanidino compounds, and by divalent cations in vivo.  相似文献   

13.
An inorganic pyrophosphatase was purified over 600-fold to homogeneity as judged by polyacrylamide gel electrophoresis. The enzyme is a tetramer of Mr = 84,000, has a sedimentation coefficient of 5.8S, a Stokes radius of 3.5 nm, and an isoelectric point of 5.7. Like the enzyme of Escherichia coli, the pyrophosphatase appears to be made constitutively. The pH and temperature optima are 8.3 and 80 degrees C, respectively. The Km for PPi is 0.6 mM. A divalent cation is essential, with Mg2+ preferred. The enzyme uses only PPi as a substrate.  相似文献   

14.
Cation dependence of restriction endonuclease EcoRI activity   总被引:3,自引:0,他引:3  
Restriction endonuclease EcoRI cleaves the DNA sequence 5'd(-G-A-A-T-T-C-) under optimum digestion conditions. A variation in pH and ionic strength can result in EcoRI activity when 5'd(-A-A-T-T-) is cut. A divalent cation, usually Mg2+, is required for enzyme activity, though Mn2+ can also be used. Eight different cations with ionic radius/charge ratios similar to Mg2+ were tested and Co2+ and Zn2+ were also found to act as cofactors for EcoRI. A comprehensive study has been made of the effect of NaCl and pH on the EcoRI/EcoRI transition in the presence of the above four cations. Generally, a decrease in NaCl and/or an increase in pH caused a decrease in enzyme specificity. The changeover depended on the cation. They may be placed in order of their ability to increase EcoRI specificity thus: Co2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. The Km of EcoRI for ColE1 DNA, in the presence of Co2+, was found to be 0.4 nM, compared to 3 nM with Mg2+, whereas the turnover was only one double-stranded scission/min with Co2+ compared to eight/min with Mg2+. The implications of all these findings on the enzyme's mechanism are discussed.  相似文献   

15.
Evidence is presented for the presence of both diethylstilbestrol (DES)-sensitive and DES-insensitive Mg2+-ATPase activities in plasma membrane enriched fractions of Dictyostelium discoideum. When removed from the membrane, the DES-sensitive activity is markedly less stable than the DES-insensitive activity, and the two activities display a number of quite distinct properties. The DES-sensitive enzyme has a decided preference for Mg2+ over Ca2+, displays saturation kinetics in response to ATP as substrate (Km = 0.2 mM) and has a narrow pH optimum range. In contrast, the DES-insensitive activity is stimulated equally by Mg2+ or Ca2+, is not saturable by ATP within the mM concentration range and has a much broader pH optimum. The DES-insensitive activity has been purified extensively. The purified enzyme is inhibited by vanadate and fluoride, but is insensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide and thimerosal. In the absence of divalent cations, the enzyme displays a sigmoidal activity curve in response to substrate concentration, which is abolished by addition of either Mg2+ or Ca2+, suggesting a binding site for a divalent cation and a positive cooperative interaction. The enzyme is capable of hydrolyzing other nucleotide triphosphates and ADP, but is without activity on AMP, p-nitrophenyl phosphate and pyrophosphate. The enzyme has an apparent molecular weight of approximately 64,000.  相似文献   

16.
A novel exopolyphosphatase has been isolated from the cytosol of Saccharomyces cerevisiae grown to the stationary phase after its transfer from phosphate-deficient to complete medium. The PPX1 gene responsible for 40-kD exopolyphosphatase of the cytosol does not encode it. Specific activity of the preparation is 150 U/mg, purification degree is 319, and the yield is 16.9%. The minimal molecular mass of the active but unstable enzyme complex is approximately 125 kD. A stable enzyme complex with a molecular mass of approximately 500 kD is composed of two polypeptides of approximately 32 and 35 kD and apparently polyphosphates (polyP). Unlike the enzyme encoded by PPX1, the high-molecular-mass exopolyphosphatase is slightly active with polyP3, not inhibited by antibodies suppressing the activity of 40-kD exopolyphosphatase, inhibited by EDTA, and stimulated by divalent cations to a lesser extent. The high-molecular-mass exopolyphosphatase hydrolyzes polyP with an average chain length of 208 to 15 phosphate residues to the same extent, but is inactive with ATP, PPi, and p-nitrophenyl phosphate. The activity with polyP3 is 13% of that with polyP208. The Km values for polyP208, polyP15, and polyP3 hydrolysis are 3.5, 75, and 1100 microM, respectively. The enzyme is most active at pH approximately 7. Co2+ at the optimal concentration of 0.1 mM stimulates the activity 6-fold, while Mg2+ at the optimal concentration of 1 mM enhances it 2-fold. The enzyme under study is similar in some properties to an exopolyphosphatase purified earlier from yeast vacuoles.  相似文献   

17.
The acetate activating system of Acetobacter aceti has been studied. The enzyme responsible, acetyl-CoA synthetase, has been purified about 500-fold from crude cell extracts and was approximately 85% pure as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. The purified enzyme showed optimal activity at pH 7.6 in both Tris-HCL and potassium phosphate buffers. In its purest form, the enzyme was stable at 4 degrees-C but denatured upon freezing. The Km values for CoA, ATP and acetate were found to be 0.104 mM, 0.36 mM and 0.25 mM respectively; propionate and acrylate were also activated by the enzyme but not butyrate, isobutyrate or valerate. GTP, UTP, CTP and ADP could not replace ATP in the reaction, and cysteine or pantetheine failed to replace CoA. The cationic requirements were studied and of the divalent cations tested, only Mn2+ could significantly replace Mg2+ in the reaction; K+ and NH4+ stimulated enzyme activity but inhibited at high concentrations; Na+ was a poor activator, but did not inhibit at higher concentrations. The effect of a number of glucose and other metabolites on enzyme activity has been tested.  相似文献   

18.
Membrane-bound 5'-nucleotidase from Vibrio parahaemolyticus was solubilized and purified using a nonionic detergent, heptyl-beta-D-thioglucoside, and was characterized. This enzyme required Mg2+ for activity, maximum activity being observed at 5 and 20 mM Mg2+ with AMP and ATP, respectively, as substrates. Of the divalent cations tested, Mn2+ and Co2+ were able to replace Mg2+ partially, whereas Ca2+ was ineffective. Zinc strongly inhibited the enzyme activity and Ni2+ caused partial inhibition. This enzyme required Cl- for activity, the optimal concentration being 20 mM or more. The order of effectiveness of anions was Cl- greater than Br- greater than I- approximately NO3-. Sulfate and acetate were ineffective. The optimal pH was 8.0. The activity of the purified enzyme was stimulated by the addition of lipid to the assay mixture. This enzyme hydrolyzed all 5'-nucleotides tested, but did not hydrolyze 3'-nucleotides or ribose 5-phosphate. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme appeared to be a single polypeptide, with a molecular weight of 72 kDa.  相似文献   

19.
A nucleoside triphosphatase/deoxynucleoside triphosphatase associated with the chromatin fraction from a highly purified preparation of pea nuclei has been isolated and characterized. The purified enzyme has a molecular weight of 47,000 as checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it has an isoelectric point of 6.6. In the presence of divalent cations (Mg2+ = Mn2+ greater than Ca2+), this enzyme hydrolyzes nucleoside triphosphates or deoxynucleoside triphosphates. Hydrolysis is optimal at pH 7.5 and is significantly inhibited by relatively low concentrations of quercetin, but is not sensitive to vanadate, nitrate, or oligomycin. The enzyme has a rather broad nucleotide substrate specificity and has a Km for MgATP2- of 0.6 mM. The enzyme activity is stimulated over 3-fold by Ca2+ and calmodulin, and the stimulation is blocked by the Ca2+ chelator EGTA and by the calmodulin antagonists compound 48/80 and chlorpromazine.  相似文献   

20.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号