首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to investigate, whether dopamine D1 and/or D2 receptors are able to interfere with the ATP-induced increase of the intracellular Ca2+ concentration ([Ca2+]i) in cultured striatal neurons identified by their morphological characteristics and their [Ca2+]i transients in response to a high-K+ superfusion medium. ATP appeared to release Ca2+ mostly from an intracellular pool, since its effect was markedly depressed in the presence of cyclopiazonic acid, which is known to deplete such storage sites [Rubini, P., Pinkwart, C., Franke, H., Gerevich, Z., N?renberg, W., Illes, P., 2006. Regulation of intracellular Ca2+ by P2Y1 receptors may depend on the developmental stage of cultured rat striatal neurons. J. Cell. Physiol. 209, 81-93]. The mixed D1/D2 receptor agonist dopamine increased the ATP-induced [Ca2+]i transients in a subpopulation of neurons. At the same time, dopamine did not alter the responses to K+ in these cells. The selective D1 (SKF 83566) and D2 (sulpiride) receptor antagonists failed to modify the effect of ATP, but unmasked in the previously unresponsive neurons an inhibitory and facilitatory effect of dopamine, respectively. A combination of the two antagonists resulted in a failure of dopamine to modulate the [Ca2+]i responses in any cell investigated. In conclusion, D1 and D2 receptors may modulate in an opposite manner the signalling pathways of P2Y1 receptors in striatal neurons and thereby alter their development/growth or their cellular excitability and/or the release of GABA from their terminals.  相似文献   

2.
James G  Butt AM 《Cell calcium》2001,30(4):251-259
It is known that ATP acts as an extracellular messenger mediating Ca2+ signalling in glial cells. Here, the mechanisms involved in the ATP-evoked increase in glial [Ca2+]i were studied in situ, in the acutely isolated rat optic nerve. ATP and agonists for P2X (a,b-metATP) and P2Y (2MeSATP) purinoreceptors triggered raised glial [Ca2+]i, and there was no significant difference between cells identified morphologically as astrocytes and oligodendrocytes. Dose-response curves indicated that P2Y receptors were activated at nanomolar concentrations, whereas P2X purinoreceptors were only activated above 10 microM. The rank order of potency for several agonists indicated optic nerve glia expressed heterogeneous purinoreceptors, with P2Y1< or = P2Y2/4< or = P2X. The ATP evoked increase in [Ca2+]i was reversibly blocked by the P2X/Y purinoreceptor antagonist suramin (100 microM) and markedly reduced by thapsigargin (10 microM), which blocks IP3-dependent release of Ca2+ from intracellular stores. Removal of extracellular Ca2+ reduced the ATP evoked increase in [Ca2+]i and completely blocked its recovery, indicating that refilling of intracellular stores was ultimately dependent on Ca2+ influx from the extracellular milieu. The results implicate ATP as an important signal in CNS white matter astrocytes and oligodendrocytes in situ, and indicate that metabotropic P2Y purinoreceptors mobilize intracellular Ca2+ at physiological concentrations of ATP, whereas ionotropic P2X purinoreceptors induce Ca2+ influx across the plasmalemma only at high concentrations of ATP, such as occur following CNS injury.  相似文献   

3.
We characterized ATP-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current in cultured rat myenteric neurons using ratiometric Ca2+ imaging with fura-2 and the whole cell patch-clamp technique, respectively. Neuronal cells were functionally identified by [Ca2+]i responses to high K+ and nicotine, which occurred only in cells positive for neuron-specific protein gene product 9.5 immunoreactivity. ATP evoked a dose-dependent increase of [Ca2+]i that was greatly decreased by the removal of extracellular Ca2+ concentration ([Ca2+]o). The amplitude of the [Ca2+]i response to ATP was reduced by half in the presence of voltage-dependent Ca2+ channel blockers. In [Ca2+]o-free solution, ATP produced a small transient rise in [Ca2+]i similar to that induced by P2Y agonists. At -60 mV, ATP evoked a slowly inactivating inward current that was suppressed by the removal of extracellular Na+ concentration. The current-voltage relation for ATP showed an inward rectification with the reversal potential of about 0 mV. The apparent rank order of potency for the purinoceptor agonist-induced increases of [Ca2+]i was ATP > or = adenosine 5'-O-3-triphosphate > or = CTP > or = 2-methylthio-ATP > benzoylbenzoyl-ATP. A similar potency order was obtained with current responses to these agonists. P2 antagonists inhibited inward currents induced by ATP. Ca2+ and Mg2+ suppressed the ATP-induced current, and Zn2+, Cu2+, and protons potentiated it. RT-PCR and immunocytochemical studies showed the expression of P2X2 receptors in cultured rat myenteric neurons. These results suggest that ATP mainly activates ionotropic P2X2 receptors, resulting in a [Ca2+]i increase dependent on [Ca2+]o in rat myenteric neurons. A small part of the ATP-induced [Ca2+]i increase may be also mediated via a P2Y receptor-related mechanism.  相似文献   

4.
5.
Deregulation of the intracellular Ca2+ homeostasis by NMDA receptor activation leads to neuronal cell death. Induction of the mitochondrial permeability transition pore (MPT) by Ca2+ is a critical event in mediating cell death. In this study, we used fluorescent Ca2+ indicators to investigate the effect of high concentrations of NMDA on cytosolic and mitochondrial Ca2+ concentrations ([Ca2+]c and [Ca2+]m, respectively) in cultured striatal neurons. Exposure to NMDA resulted in an immediate, sustained increase in [Ca2+]c followed by a secondary increase in [Ca2+]c. This second increase of [Ca2+]c was prevented by pretreatment with N-methyl-valine-4-cyclosporin (NMV-Cys). Exposure of neurons to NMDA also resulted in an increase in [Ca2+]m that was followed by a precipitous decrease in the rhod-2 signal. This decrease followed the time frame of the secondary increase in [Ca2+]c. Preincubation of the neurons with NMV-Cys prevented the decrease in rhod-2 fluorescence. These dynamic changes in the rhod-2 signal and [Ca2+]m in response to NMDA were confirmed by using confocal microscopy. The presented results indicate that MPT can be detected in living neurons using fluorescent Ca2+ indicators, which would allow the study of the physiological role of MPT in cell death.  相似文献   

6.
Adenosine 5'-triphosphate (ATP) which is released from neuronal and non-neuronal tissues interacts with cell surface receptors to produce a broad range of physiological responses. The present study addressed the issue of whether the cells of the superior cervical ganglia (SCG) respond to ATP. To this end, the dynamics of the intracellular calcium ion concentration ([Ca2+]i) of neurons and satellite cells in intact SCG was analyzed by laser scanning confocal microscopy. ATP produced an increase of [Ca2+]i in both neurons and satellite cells; initially, ATP elicited [Ca2+]i increase in satellite cells and, subsequently, a [Ca2+]i change in neurons was observed. P1 purinoceptor agonists had no effect on this process, but P2 purinoceptor agonists induced [Ca2+]i increase and suramin totally inhibited ATP-induced [Ca2+]i dynamics in both neurons and satellite cells. In satellite cells, Ca2+ channel blockers and the removal of extracellular Ca2+, but not thapsigargin pretreatment, abolished ATP-induced [Ca2+]i dynamics. In contrast, thapsigargin pretreatment abolished ATP-induced [Ca2+]i dynamics in neurons. Reactive blue-2 inhibited the ATP-induced reaction on neurons alone. Uridine 5'-triphosphate caused a [Ca2+]i increase in neurons and alpha,beta-methylene ATP caused a [Ca2+]i increase in satellite cells. We concluded that neurons respond to extracellular ATP mainly via P2Y purinoceptors and that satellite cells respond via P2X purinoceptors.  相似文献   

7.
Real-time alterations in intracellular Ca2+ ([Ca2+]i) were monitored in fluo-3-loaded cerebellar granule neurons (CGNs) exposed to the brevetoxin PbTx-1. [Ca2+]i was measured using a fluorescent plate reader (FLIPR), which measures simultaneously the mean intracellular Ca2+ change in a population of cultured cells in each well of a 96-well plate. PbTx-1 produced rapid and concentration-dependent increases in neuronal [Ca2+]i with a potency nearly identical to that determined previously for PbTx-1-induced neurotoxicity. The NMDA receptor antagonists MK-801, dextrorphan, and D(-)-2-amino-5-phosphonopentanoic acid, and tetanus toxin, an inhibitor of Ca2+-dependent exocytotic neurotransmitter release, effected significant reductions in both the integrated fluo-3 fluorescence response and excitatory amino acid release and protected CGNs against PbTx-1 neurotoxicity. The L-type Ca2+ channel antagonist nifedipine produced a modest reduction in the fluo-3 response but reduced substantially the plateau phase of the PbTx-1 increment in [Ca2+]i when combined with MK-801. When nifedipine and MK-801 were combined with the Na+/Ca2+ exchanger (reversed mode) inhibitor KB-R7943, the PbTx-1 increment in [Ca2+]i was nearly completely attenuated. These data show that Ca2+ entry into PbTx-1-exposed CGNs occurs through three primary routes: NMDA receptor ion channels, L-type Ca2+ channels, and reversal of the Na+/Ca2+ exchanger. There was a close correlation between reduction of the integrated fluo-3 fluorescence response and the level of neuroprotection afforded by blockers of each Ca2+ entry pathway; however, simultaneous blockade of L-type Ca2+ channels and the Na+/Ca2+ exchanger, although reducing the integrated [Ca2+]i response to a level below that provided by NMDA receptor blockade alone, failed to completely attenuate PbTx-1 neurotoxicity. This finding suggests that in addition to total [Ca2+]i load, neuronal vulnerability is governed principally by the NMDA receptor Ca2+ influx pathway.  相似文献   

8.
R Yuste  L C Katz 《Neuron》1991,6(3):333-344
We assessed the pathways by which excitatory and inhibitory neurotransmitters elicit postsynaptic changes in [Ca2+]i in brain slices of developing rat and cat neocortex, using fura 2. Glutamate, NMDA, and quisqualate transiently elevated [Ca2%]i in all neurons. While the quisqualate response relied exclusively on voltage-gated Ca2+ channels, almost all of the NMDA-induced Ca2+ influx was via the NMDA ionophore itself, rather than through voltage-gated Ca2+ channels. Glutamate itself altered [Ca2+]i almost exclusively via the NMDA receptor. Furthermore, synaptically induced Ca2+ entry relied almost completely on NMDA receptor activation, even with low-frequency stimulation. The inhibitory neurotransmitter GABA also increased [Ca2+]i, probably via voltage-sensitive Ca2+ channels, whereas the neuromodulator acetylcholine caused Ca2+ release from intracellular stores via a muscarinic receptor. Low concentrations of these agonists produced nonperiodic [Ca2+]i oscillations, which were temporally correlated in neighbouring cells. Optical recording with Ca2(+)-sensitive indicators may thus permit the visualization of functional networks in developing cortical circuits.  相似文献   

9.
Vasopressin (VP) release from the hypothalamo-neurohypophyseal system (HNS) is stimulated by ATP activation of P2X purinergic receptors and by activation of 1-adrenergic receptors by phenylephrine (PE). These responses are potentiated by simultaneous exposure to ATP+PE. Potentiation was blocked by depleting intracellular calcium stores with thapsigargin. To test the hypothesis that the synergistic response to ATP+PE reflects alterations in the intracellular calcium concentration ([Ca2+]i), [Ca2+]i was monitored in supraoptic neurons in HNS explants loaded with fura 2-AM. Both ATP and PE induced rapid, but transient, elevations in [Ca2+]i. In 0.3 mM Ca2+, the peak response to ATP was greater than to PE but did not differ from the peak response to ATP+PE. A sustained elevation in [Ca2+]i was induced by ATP+PE, that was greater than ATP or PE alone. In 2 mM Ca2+, the peak response to ATP+PE was significantly greater than to either ATP or PE alone, and the sustained response to ATP+PE was greater than to either agent alone. Responses were comparable in the presence of TTX. The sustained elevation in [Ca2+]i was also observed when ATP+PE was removed after 1 min, but it was eliminated by either thapsigargin or removing external calcium, indicating that both calcium influx and calcium release from internal stores are required. Some cells were vasopressinergic based on a VP-induced increase in [Ca2+]i. These observations support the hypothesis that simultaneous exposure to ATP+PE induces a different pattern of [Ca2+]i than either agent alone that may initiate events leading to synergistic stimulation of VP release.  相似文献   

10.
The process by which store-operated Ca2+ channels (SOCs) deliver Ca2+ to the endoplasmic reticulum (ER) and the role of (Ca2++Mg2+)ATP-ases of the ER in the activation of SOCs in H4-IIE liver cells were investigated using cell lines stably transfected with apo-aequorin targeted to the cytoplasmic space or the ER. In order to measure the concentration of Ca2+ in the ER ([Ca2+]er), cells were pre-treated with 2,5-di-tert-butylhydroquinone (DBHQ) to deplete Ca2+ in the ER before reconstitution of holo-aequorin. The addition of extracellular Ca2+ (Cao2+) to Ca2+-depleted cells induced refilling of the ER, which was complete within 5 min. This was associated with a sharp transient increase in the cytoplasmic Ca2+ concentration ([Ca2+]cyt) of about 15 s duration (a Cao2+-induced [Ca2+]cyt spike) after which [Ca2+]cyt remained elevated slightly above the basal value for a period of about 2 min (low [Ca2+]cyt plateau). The Cao2+-induced [Ca2+]cyt spike was inhibited by Gd3+, not affected by tetrakis-(2-pyridymethyl) ethylenediamine (TPEN), and broadened by ionomycin and the intracellular Ca2+ chelators BAPTA and EGTA. Refilling of the ER was inhibited by caffeine. Neither thapsigargin nor DBHQ caused a detectable inhibition or change in shape of the Cao2+-induced [Ca2+]cyt spike or the low [Ca2+]cyt plateau whereas each inhibited the inflow of Ca2+ to the ER by about 80%. Experiments conducted with carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) indicated that thapsigargin did not alter the amount of Ca2+ accumulated in mitochondria. The changes in [Ca2+]cyt reported by aequorin were compared with those reported by fura-2. It is concluded that (i) there are significant quantitative differences between the manner in which aequorin and fura-2 sense changes in [Ca2+]cyt and (ii) thapsigargin and DBHQ inhibit the uptake of Ca2+ to the bulk of the ER but this is not associated with inhibition of the activation of SOCs. The possible involvement of a small sub-region of the ER (or another intracellular Ca2+ store), which contains thapsigargin-insensitive (Ca2++Mg2+)ATP-ases, in the activation of SOCs is briefly discussed.  相似文献   

11.
The effects of N-methyl-D-aspartate (NMDA) on the free intracellular Ca2+ concentration [( Ca2+]i) and the energy state in superfused cerebral cortical slices have been studied using 19F- and 31P-nuclear magnetic resonance spectroscopy. [Ca2+]i was measured using the calcium indicator 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA). NMDA (10 microM) in the absence of extracellular Mg2+ caused the expected rise in [Ca2+]i but produced an impairment of the energy state: the phosphocreatine (PCr) content was decreased by 42%, and the Pi/PCr ratio was increased by 55%. There was no detectable change in ATP or free intracellular Mg2+ concentration. Increasing the NMDA concentration in the superfusing medium to 100 or 400 microM caused no further increase in [Ca2+]i or further decrease in PCr content, but the Pi/PCr ratio continued to rise. The impairment of the energy state preceded the effect on [Ca2+]i, and these changes were irreversible on return to control conditions. Repeating the experiments in the presence of 1.2 mM extracellular Mg2+ resulted in similar changes in the energy state, with no change in [Ca2+]i. The possibilities that the effects were due to membrane depolarisation or to the presence of 5FBAPTA within the tissues were eliminated. The results suggest that low concentrations (10 microM) of NMDA produce an impaired energy state independent of the presence of extracellular Mg2+ and that the decreased energy state is not due to the changes in [Ca2+]i, which are seen only in the absence of extracellular Mg2+.  相似文献   

12.
Redistribution of cytosolic free Ca2+ following Ca2+ influx into the cytoplasm was studied in single smooth muscle cells isolated from guinea-pig urinary bladder. Voltage-clamped cells were loaded with a low-affinity fluorophore Indo-1FF. A decay of free intracellular Ca2+ ([Ca2+]i) after the termination of the depolarizing pulse (1 s from -50 mV to +20 mV) was fitted with a single exponential and the effect of various substances on the time constant was compared. At a holding potential of +80 mV the [Ca2+]i decay was 1.56 times slower compared to that at -50 mV suggesting the presence of a voltage-dependent process redistributing Ca2+. In the presence of cyclopiazonic acid (CPA, 10 microM), an inhibitor of sarco(endo)plasmatic Ca2+ pump (SERCa), the [Ca2+]i decay was 3.93 times slower than that in the absence of the inhibitor. Introduction of a polycation Ruthenium Red (RR) (20 microM), an inhibitor of the mitochondrial Ca2+ uniporter, into a cell or collapsing a transmitochondrial H+ gradient with the protonophore CCCP (2 microM) slowed down the [Ca2+]i decay 6.05-fold and 9.78-fold, respectively. The apparent amplitude of [Ca2+]i increments was also increased by CCCP. Increasing H+ buffering power in the intracellular solution from 10 mM to 40 mM of HEPES greatly reduced the effect of CCCP on [Ca2+]i decay. A further increase in HEPES concentration to 100 mM eliminated the effects of CCCP both on the time course of [Ca2+]i decay and on the amplitude of [Ca2+]i increment. Perfusion of RR together with 100 mM HEPES into the cytoplasm was without effect on the decay time course of [Ca2+]i. The effect of CPA on [Ca2+]i decay was also reduced in cells loaded with 100 mM HEPES; the time constant in the presence of CPA was slowed down by a factor of 2.18. Application of 10 mM Na(+)-butyrate to the cells loaded with 10 mM HEPES resulted in a slowing down of [Ca2+]i decay: the time constant was increased by a factor of 5.84. Measurement of intracellular pH with SNARF-1 confirmed cytoplasmic acidification during application of Na(+)-butyrate and CCCP. It is concluded that the contribution of mitochondrial Ca2+ uptake to the rapid [Ca2+]i decay is much less than could be extrapolated from action of protonophores in these smooth muscle cells. The results also demonstrate the importance of intracellular pH for Ca2+ handling in the cytoplasm of smooth muscle cells.  相似文献   

13.
The hormonal stimulation of phospholipase C and the consequent activation of the Ca2+-phosphatidylinositol cascade in eukaryotic cells is associated with modifications of the [Ca2+]i (intracellular Ca2+ concentration) which modulates cellular functions. In this study, these modifications were investigated in primary cultures of human thyroid cells. The mean apparent basal [Ca2+]i of human thyrocytes measured using the intracellularly trapped fluorescent indicator Quin-2 was found to be 89 +/- 16 nM (n = 49). ATP and, to a lesser extent, ADP, but not AMP or adenosine, elicited a concentration-dependent biphasic rise in human thyrocytes [Ca2+]i and increased their 45Ca2+ efflux. The first transient phase of the [Ca2+]i rise induced by ATP was resistant to extracellular Ca2+ depletion, whereas the second sustained phase was abolished in these conditions. This suggests that although the first phase of this response involves a release of Ca2+ from intracellular stores, the second phase requires extracellular Ca2+ influx. The response of human thyrocytes to analogs of ATP is compatible with a P2-purinergic effect of ATP on these cells. Bradykinin and TRH affected the human thyrocyte [Ca2+]i and 45Ca2+ efflux similarly to ATP. The human thyrocyte [Ca2+]i and the 45Ca2+ efflux were not modified by carbachol, a nonhydrolyzable analog of acetylcholine. The present results suggest the presence of P2-purinergic receptors to ATP and of receptors to TRH and bradykinin on human follicular thyroid cells. They also confirm that the Ca2+-phosphatidylinositol cascade is present in these cells and suggest that this cascade is modulated by ATP, TRH, and bradykinin. As this cascade is involved in the regulation of protein iodination, and therefore of thyroid hormones synthesis, these agents might have an important role in the regulation of the thyroid function.  相似文献   

14.
The contractile sensitivity of smooth muscle to changes in myoplasmic [Ca2+] is dependent on the form of stimulation. Both myosin phosphorylation and force are less sensitive to increases in [Ca2+]i derived from Ca2+ entry through L-type Ca2+ channels than to increases in [Ca2+] induced by agents which release internal Ca2+ stores. We hypothesized that activation of receptor-operated channels should produce a [Ca2+]i sensitivity similar to that induced by opening L channels. Aequorin-estimated myoplasmic [Ca2+] and myosin light chain phosphorylation were measured in swine carotid media tissues stimulated with ATP, an activator of the only known receptor-operated cation channel in smooth muscle. ATP, via activation of a P2x purinergic receptor, induced large, transient increases in [Ca2+]i, yet only small transient elevations in phosphorylation or force. Rapid desensitization to ATP was partially, but not completely, caused by hydrolysis of ATP into adenosine since 1) alpha-beta-methylene ATP (a poorly hydrolyzable analog of ATP) produced larger, yet still transient increases in [Ca2+]i, phosphorylation, and force; 2) BW A1433U, a P1 (adenosine) receptor antagonist, enhanced ATP-induced contractions; and 3) ATP, but not alpha-beta-methylene ATP increased bath [adenosine]. The [Ca2+]i sensitivity of phosphorylation during P2x receptor activation was similar to that observed with KCl-depolarization-induced opening of L channels, supporting the hypothesis that transplasmalemmal Ca2+ influx produces less phosphorylation and force than mobilization of intracellular Ca2+ stores. Cumulative additions of higher alpha-beta-methylene ATP concentrations induced repeated transient contractions, indicative of an unusual form of receptor desensitization which could be explained if the affinity of the P2x receptor for ATP, but not the receptor number were rapidly reduced.  相似文献   

15.
Pituitary cells express purinergic receptor-channels (P2XR), the activation of which by ATP is associated with the facilitation of Ca2+ influx. Pharmacological, RT-PCR, and nucleotide sequence analyses confirm the presence of a wild type P2X2aR and a spliced isoform P2X2bR, which lacks a portion of carboxyl terminal amino acids. Wild type and spliced isoform receptors have a similar EC50 for ATP and time-course for activation, but the spliced isoform exhibits rapid and complete desensitization, whereas the wild type channel desensitizes slowly and incompletely. Deletion and insertion studies have revealed that a 6 residue sequence located in carboxyl tail (Arg371-Pro376) is required for sustained Ca2+ influx through wild type receptors. When co-expressed, the wild type and spliced channels form functional heteropolymeric channels. The patterns of Ca2+ signaling in the majority of pituitary cells expressing ATP-gated receptor-channels are highly comparable to those observed in cells co-transfected with P2X2aR and P2X2bR. ATP-induced [Ca2+]i response in pituitary cells is partially inhibited by nifedipine, a blocker of voltage-gated L-type Ca2+ channels, suggesting that P2X2R not only drive Ca2+ into the cell, but also activate voltage-gated Ca2+ entry. Our results indicate that ATP represents a paracrine and (or) autocrine factor in the regulation of Ca2+ signaling, and that its actions are mediated in part by heteropolymeric P2X2R.  相似文献   

16.
Nakamura T  Barbara JG  Nakamura K  Ross WN 《Neuron》1999,24(3):727-737
Increases in postsynaptic [Ca2+]i can result from Ca2+ entry through ligand-gated channels or voltage-gated Ca2+ channels, or through release from intracellular stores. Most attention has focused on entry through the N-methyl-D-aspartate (NMDA) receptor in causing [Ca2+]i increases since this pathway requires both presynaptic stimulation and postsynaptic depolarization, making it a central component in models of synaptic plasticity. Here, we report that repetitive synaptic activation of metabotropic glutamate receptors (mGluRs), paired with backpropagating action potentials, causes large, wave-like increases in [Ca2+]i predominantly in restricted regions of the proximal apical dendrites and soma of hippocampal CA1 pyramidal neurons. [Ca2+]i changes of several micromolars can be reached by regenerative release caused by the synergistic effect of mGluR-generated inositol 1,4,5-trisphosphate (IP3) and spike-evoked Ca2+ entry acting on the IP3 receptor.  相似文献   

17.
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Under control conditions, superfused hippocampal slices exhibited a significantly higher phosphocreatine (PCr)/ATP ratio than cortical slices; the evidence suggests that this is due to lower concentrations of ATP, rather than higher concentrations of PCr. Glutamate caused relatively rapid decreases in PCr and ATP levels to approximately 45%, accompanied or immediately followed by an increased free intracellular calcium concentration ([Ca2+]i) and the release of Zn2+ in the cortex. In the hippocampus PCr and ATP decreased further to approximately 20% of control values, but the changes in [Ca2+]i and Zn2+ content were slower. This is in contrast to the effects of depolarisation, which produced the same rapid changes in the energy state and [Ca2+]i, with no detectable Zn2+, in both tissues. NMDA causes effects similar to those of glutamate in the cortex (decreases in the energy state, increased [Ca2+]i, and release of Zn2+). Pretreatment of the cortex for 1 h with the NMDA blocker MK-801 prevented all of the observed effects of NMDA. In contrast, pretreatment with MK-801 had no detectable effect on the increase in [Ca2+]i or the decreases in PCr and ATP caused by glutamate, although it prevented the release of zinc. The results are discussed in relation to the function of the NMDA subtype of glutamate receptor in excitotoxicity.  相似文献   

19.
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.  相似文献   

20.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号