首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The intracellular levels of adenosine 3':5'-cyclic monophosphate (cAMP) were measured in the dorsal iris of the adult newt, during the first 20 days of lens regeneration. It was found that by day 2 after lens removal there is a significant drop in the levels of cAMP. After day 2 the levels of the nucleotide increase and by day 3 they are higher than those detected on day 0. The levels of cAMP remain high up to day 8. From day 8 to day 9 there is a second drop. From day 9 to day 20 the levels of cAMP did not differ significantly from the value obtained for day 0, except for days 10, 12, and 15. The period of high levels of cAMP coincides with the period of depigmentation of iris epithelial cells, the key event of lens regeneration.  相似文献   

2.
The localization of a lens forming potency in the iris epithelium was studied by autoradiographic analysis of the distribution of 3H-thymidine labelled cells to be participated in lens regeneration in newts. DNA synthesis started from the dorsal portion of the iris epithelium around 4 days after lentectomy. 5 days after lentectomy, a large number of labelled cells were mostly found in the dorsal sector, showing strong contrast to the ventral and lateral sectors of iris, which contained a few labelled cells. The labelled index (the number of labelled cells/the number of cells in the definite pigmented area of the iris epithelium) of the dorsal sector attained the highest value, 29.7 ± 2.35, on day 7 after lentectomy, and dropped temporarily. This was followed by the second peak on day 12. The dorso-ventral ratio of the labelled index reached to the highest value, 6.87 ± 0.67, on day 5. This ratio decreased rapidly after the completion of a lens rudiment, and it became about 1. In “chase” experiments by diluting the radio-isotope with excess cold thymidine, it was obviously shown that most of the cells labelled with the radio-isotope and distributed in the dorsal marginal iris 5 days after lentectomy participated in the formation of a lens regenerate during the period of chasing. From these results, the following conclusion was drawn. The iris epithelium consists of at least 2 different cell populations; one is capable of transformation into lens cells and is distributed mostly in the dorsal portion of the iris epithelium, while the other has no potency for transformation and is able to grow to compensate a loss of the dorsal marginal cells which transformed into lens cells during the process of lens regeneration.  相似文献   

3.
Following removal of the lens through the cornea, early stages of lens regeneration from the dorsal iris of the adult newt, Notophthalmus viridescens, were studied using light and electron microscopic observations on sectioned, plastic-embedded irises. Specimens were fixed in Karnovsky's fixative every 2 days from 0 to 12 and 15 days after lentectomy. Infiltration of the iris epithelium by macrophages and their phagocytosis of melanosomes and small fragments of iris epithelial cells were observed. These macrophages were characterized by coarse nuclear chromatin, numerous mitochondria, free ribosomes, granular endoplasmic reticulum, Golgi complexes, vesicles, lysosomes, and phagosomes containing ingested melanosomes. Lamellipodia of varying length projected from their surface. Most of the cells lying on or close to the posterior surface of the iris could be identified as macrophages by these criteria. During this period, there was enlargement of the intercellular spaces within the iris epithelium. The iris epithelial cells near the margin of the pupil elongated, lost their melanin pigment and some associated cytoplasm, and acquired abundant free polyribosomes to form a lens vesicle of depigmented cells.  相似文献   

4.
Removal of the pituitary 3 days before lentectomy retards Wolffian lens regeneration in the adult newt, Notophthalmus viridescens, by two stages over a 21-day period. Hypophysectomy 5 or 10 days after lentectomy does not alter the progress of regeneration during the subsequent 10-day period. Hypophysectomy 3 days before lentectomy also significantly decreases the incorporation of [3H]thymidine by iris epithelial nuclei 5 days after lentectomy but has no statistically significant effect on the incorporation 7 days after lentectomy.Pituitary tissue from newts or frogs enhances the regenerative activity of newt iris epithelial cells in vitro and in many cases promotes lens fiber formation. To a lesser extent, other tissues, such as nerve ganglion, also enhance the production of lens fiber cells from iris epithelium in vitro, whereas muscle tissue does not; and under certain conditions iris epithelial cells were found to depigment and redifferentiate into lens cells in the absence of other tissues in vitro.  相似文献   

5.
The cellular mechanism underlying ecdysteroidogenesis throughout the last larval instar of the silkworm, Bombyx mori, was analyzed by determining the in vitro ecdysteroid secretory activity of the prothoracic glands and cAMP accumulation of gland cells, as well as changes in responsiveness to stimulation by prothoracicotropic hormone (PTTH) and 1-methyl-3-isobutylxanthine (MIX). It was found that the prothoracic glands during the first 3 days of the last instar cannot produce detectable ecdysteroid and showed no response to stimulation by PTTH or 1-methyl-3-isobutylxanthine (MIX). However, artificial elevation of cellular cAMP levels by in vitro dibutyryl cAMP treatment stimulated the glands to secrete detectable ecdysteroid, implying the presence of a cAMP-dependent ecdysteroidogenic apparatus during this stage. From days 3 to 8, basal gland activities fluctuated, but the glands showed activation responses to PTTH and to the chemicals that increase cellular cAMP levels. After the occurrence of the peak in basal gland activity on day 9, glands on day 10 showed no response to PTTH, implying a refractory state of the glands to PTTH stimulation. For cAMP accumulation, it was found that glands on day 2 began to show increased cAMP accumulation to PTTH, implying that the acquisition of gland competency for elevation of cAMP levels after stimulation by PTTH precedes that of ecdysteroid production. Moreover, during most parts of the last larval instar (between days 3 and 8) and at the pupation stage, greatly increased cAMP accumulation upon stimulation by PTTH was observed only in the presence of MIX, indicating that cAMP phosphodiesterase levels may be high during these stages. From these results, we concluded that development-specific PTTH signal transduction during the last larval instar, which shows a different pattern from that of the penultimate larval instar, may play an important role in regulating changes in prothoracic gland activity and in leading to larval-pupal metamorphosis.  相似文献   

6.
The anterior lobe of the pituitary gland can stimulate lens regeneration from the dorsal iris in the newt Notophthalmus viridescens. We have studied the effect of pituitary hormone preparations on this process. Dorsal irises were cultured for 20 days in diluted Medium 199 supplemented with 10% fetal calf serum. Bovine thyrotropin TSH-B8 at concentrations of 30 to 3000 μg/ml significantly stimulated lens regeneration in these dorsal irises. Well-developed lenses, up to stage 9, were formed, in which γ-crystallin, a protein specific for lens fibers of young lenses, was detected by immunofluorescence. Additionally, the mitotic index was 5.5 times elevated in these explants when compared to their controls. Lutropin LH-B10 at concentrations of 30 to 3000 μg/ml, prolactin PRL-B4 at concentrations of 23 to 1600 μg/ml, and porcine adrenocorticotropin ACTH-6002 at concentrations of 3 to 300 μg/ml did not stimulate lens regeneration. A weak stimulation of lens formation was observed in iris cultures with 2700 μg/ml of follitropin FSH-B1 or 3000 μg/ml somatotropin GH-B18, but not at concentrations of 30 μg/ml. Our results suggest that the inherent ability of the dorsal iris to form lens can be activated by the bovine thyrotropin preparation TSH-B8.  相似文献   

7.
Effect of retinoic acid (RA) on morphogenesis and proliferation of regenerating extremity and lens cells was studied using 3H-thymidine autoradiography and morphometry. The 3H-thymidine incorporation into the inner layer of dorsal and ventral iris was 1.5-3 times reduced by the 8th day following the RA administration. The applied RA dose (0.25 mg per animal) exerted no significant effect on the morphogenesis of regenerating lens with the exception of the case of forming an additional lens from dorsal iris. The RA effect on the regeneration of extremity corresponds to available data of literature and manifests itself in the decelerated regeneration and the appearance of additional structures along the proximodistal axis.  相似文献   

8.
Removal of the lens from the eye of an adult newt (Notophthalmus viridescens) is followed by regeneration of a new lens from the dorsal iris epithelial cells at the pupillary margin. This process is dependent upon the neural retina for its normal completion in vivo and in vitro. To examine the relationship between the retina and lens regeneration, we have conducted experiments that delimit the time period during which the retinal presence is critical (in vivo) and have investigated the influence of extracts of the retina on the progress of regeneration (in vitro). In vivo, removal of the retina at day 11 seriously retards further progression of regeneration while removal of the retina at day 15 does not retard regeneration significantly. This defines a "critical period" in regeneration of the lens during which the retina is required. Explantation of regenerates 11 or 12 days after lentectomy to organ culture medium enriched with either crude retinal homogenate or extracts prepared from chick or bovine retinas according to Courty et al. ('85, Biochimie, 67:265-269) reveals that the progress of regeneration can be supported in culture by the crude extract. This is the first demonstration of complete iris-lens transformation in culture in the presence of retinal extract. It is possible that the retina acts indirectly by promoting passage of the iris epithelial cells through the critical number of mitoses required before redifferentiation into lens cells can occur (as proposed by Yamada, '77, Monogr. Dev. Biol., 13:126). It is also possible that the retina acts by directly instructing the iris cells to redifferentiate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [3H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion.  相似文献   

10.

Background

Amphibians have the remarkable ability to regenerate missing body parts. After complete removal of the eye lens, the dorsal but not the ventral iris will transdifferentiate to regenerate an exact replica of the lost lens. We used reverse-phase nano-liquid chromatography followed by mass spectrometry to detect protein concentrations in dorsal and ventral iris 0, 4, and 8 days post-lentectomy. We performed gene expression comparisons between regeneration and intact timepoints as well as between dorsal and ventral iris.

Results

Our analysis revealed gene expression patterns associated with the ability of the dorsal iris for transdifferentiation and lens regeneration. Proteins regulating gene expression and various metabolic processes were enriched in regeneration timepoints. Proteins involved in extracellular matrix, gene expression, and DNA-associated functions like DNA repair formed a regeneration-related protein network and were all up-regulated in the dorsal iris. In addition, we investigated protein concentrations in cultured dorsal (transdifferentiation-competent) and ventral (transdifferentiation-incompetent) iris pigmented epithelial (IPE) cells. Our comparative analysis revealed that the ability of dorsal IPE cells to keep memory of their tissue of origin and transdifferentiation is associated with the expression of proteins that specify the dorso-ventral axis of the eye as well as with proteins found highly expressed in regeneration timepoints, especially 8 days post-lentectomy.

Conclusions

The study deepens our understanding in the mechanism of regeneration by providing protein networks and pathways that participate in the process.
  相似文献   

11.
The proliferative activity of the pigment epithelium cells transplanted in the lens-less eyes was studied in the adult crested newt. The cells of transplanted pigment epithelium incorporated 3H-thymidine injected intraperitoneally. Within 10 days after explantation, the index of labelled nuclei equaled 27.8-34.0% and within 20 days the number of labelled cells doubled. By that time the proliferating transplant cells were depigmented and formed 2-3 rows of cells of retinal rudiment. In response to the removal of lens from the of recipients eyes their regeneration proceeded. Irrespective of participation (dorsal iris) or nonparticipation in lens regeneration (ventral iris), the index of labelled nuclei in these regions of iris had similar values. The eyes of recipients were also characterized by a local proliferation of pigment epithelium cells in the zones of retinal detachment. In these zones the index of labelled nuclei in the pigment epithelium equaled 11.0-31.3%.  相似文献   

12.
Cellular Studies of X-Ray Induced Inhibition of Lens Regeneration   总被引:1,自引:0,他引:1  
Whole-body X-irradiation of adult newts 0 to 3 days after lentectomy inhibits transformation of the dorsal iris epithelium into a lens in all cases. The first question raised was whether irradiation affects infiltration of the iris area by macrophages, and the phagocytic activities of these cell types in the iris epithelium (prominent phenomena in this system). The number of macrophages infiltrating into the iris epithelium, and their phagocytic activities (indicated by uptake of melanosomes) were not affected by irradiation under those conditions. The second group of experiments concerns the possible effects of irradiation on DNA replication of iris epithelial cells, which become transformed into lens cells in the non-irradiated system. Autoradiographic studies of iris epithelial cells in vivo revealed a significant suppressive effect of irradiation on the frequencies of cells incorporating 3H-thymidine 7 and 14 days after lentectomy. When autoradiography was applied to the primary pure culture of iris epithelial cells at different time intervals after the start of culture and irradiation in vitro , significant and persistent reduction of cell labelling due to irradiation, was demonstrated. Multiplication of spread cells in the iris epithelial culture was strongly and persistently inhibited throughout a period of 2 months. Inhibition of cell labelling and of cell multiplication was always accompanied by reduction in the extent of de-pigmentation of iris epithelial cells. De-pigmentation is one of the requirements for the cells become transformed into lens cells. The possible mechanism of radiation-induced inhibition of lens regeneration is discussed.  相似文献   

13.
Adult newts (Notophthalmus viridescens) were lentectomized and at intervals from 4 to 21 days after lentectomy iridocorneal complexes from these animals were examined by scanning electron microscopy to allow a full appreciation for the shape of the regenerating lens. Until around day 12 after lentectomy the posterior surface of the iris is covered by a dense mat of fibrous material which cannot be removed without damage to the iris and which obscures the events of cytoplasmic shedding. The regenerate becomes visible first around stage IV (day 12). A small but clear groove demarcates the regenerate from the rest of the iris. As regeneration progresses there is a marked reduction in debris on the iris surface and the regenerate appears as a U-shaped thickening occupying about one-third of the dorsal half of the iris. During later stages (VI–X) the regenerate protrudes into the pupil inferiorly and posteriorly towards the retina, but does not encroach laterally on the remaining pigmented iris tissue. Prior to secretion of the lens capsule the outline of individual cells is visible on the surface of the regenerate and some regenerates exhibit a prominent dimple on their posterior aspects. Following secretion of the capsule the surface of the regenerate becomes smooth. Quantitative studies show that volume and maximum section area of the regenerate are both more strongly correlated with developmental stage of regeneration than with time after lentectomy.  相似文献   

14.
Experiments were designed to compare the effects of recombinant newt fibroblast growth factor-1 (rnFGF-1) and recombinant human glial growth factor (rhGGF) on lens and retina regeneration in the eyes of adult newts. Both eyes were retinectomized and lentectomized. Beginning 3 days after the operation, one eye was given either 0.1 microg of rnFGF-1 or 0.1 microg of rhGGF in 1 microl of phosphate-buffered saline (PBS) per injection, three per week. Contralateral operated eyes served as controls and were treated with PBS alone or were not injected. In eyes that were not injected, injected with PBS alone, or with PBS containing rhGGF, regeneration of both the retina and the lens proceeded normally as described in the literature. In these control eyes, the entire retinal pigmented epithelium (RPE) depigmented/dedifferentiated and a retina rudiment formed from which a new retina regenerated by the end of the experiment at day 41 post-operation. Likewise, only a small area of dorsal iris depigmented/dedifferentiated and formed a lens vesicle from which a lens subsequently regenerated. The vitreous remained relatively free of loose cells.In eyes given rnFGF-1, the RPE depigmented/dedifferentiated and formed what appeared to be a retina rudiment but a new retina did not regenerate. Instead, vesicles were seen associated with the retina rudiment. In eyes given rnFGF-1, both the dorsal iris and ventral iris depigmented/dedifferentiated and lens regeneration occurred but the new lenses had abnormal fiber cells and the lens epithelium was very thin or absent. In addition, ectopic lenses usually regenerated in rnFGF-1-treated eyes. An abundance of loose cells were present in the vitreous of rnFGF-1-treated eyes associated largely with the RPE and the dorsal and ventral irises.The results are consistent with the view that the timely expression of FGFs is involved in the depigmentation/dedifferentiation of the RPE and dorsal iris and is necessary for proper regeneration of the lens and neural retina. Continued presence of FGF results in continued and excessive dedifferentiation, resulting in the lack of retina regeneration and abnormal lens regeneration.  相似文献   

15.
We examined whether lymphangiogenesis is essential for the process of lens destruction and subsequent remodeling in the newt eye. Lens regeneration was induced by pricking the lens once with a needle through the cornea. The results showed that the formation of the vacuoles which was mediated by lysosomes occurred in the original lens on 8 days after pricking, and histolysis of the lens was induced 24 h later. At that time, new lymphatic vessels appeared in the normally avascular cornea. Immunofluorescence studies revealed the expression of VEGF receptor not only on the cells in the central cornea but also on those in the dorsal iris. Moreover, dendritic cells (DCs) migrated from the peripheral to the central regions in the cornea to engulf the remains of the lens. Next, to determine the extent to which the DCs are important for lens regeneration, we transplanted the DCs that had engulfed the remains of the lens into the eyeball of the normal animals. Interestingly, lens regeneration began in the dorsal iris of eyeballs into which the DCs were transplanted and also in those in which no DCs were transplanted. However, surgical removal of the spleen of the recipient animals prior to transplantation resulted in both a failure of both the VEGFR expression in the dorsal iris and a failure of the novel regeneration.  相似文献   

16.
Since neural retina stimulates regeneration of a lens from the dorsal iris in newts, RNA and protein synthesis in the neural retina was investigated during this process. Incorporation of 3H-uridine and 3H-leucine using liquid scintillation counting was employed to compare RNA and protein synthesis in the neural retina from sham-operated control eyes with that in eyes during lens regeneration. An initial increase in 3H-uridine uptake was seen one to three days after lentectomy. This was followed by greater incorporation of 3H-leucine, indicating increased protein synthesis between 5 to 15 days after lens removal. A decrease in 3H-uridine uptake was also seen at 5 to 12 days after lentectomy. After 20 days both the RNA and protein synthesis returned to the normal level. Since the increase in protein synthesis is preceded by an increase in RNA synthesis, the two processes might be related. The results indicate significant changes in the synthesis of macromolecules by the neural retina following lentectomy. These may be indirectly related to the production of the neural retinal factor with stimulates lens differentiation.  相似文献   

17.
Biochemical assay of acid phosphatase in normal and lens-regenerating eyes of the urodele Diemictylus viridescens, using p-nitrophenyl phosphate as substrate, demonstrates both soluble and lysosomal fractions of the enzyme. While the specific activity of the soluble fraction remains unchanged during lens regeneration, the lysosomal fraction shows four distinct rises in specific activity during the thirty-day regeneration period studied. These peak activities on the second, eighth, fifteenth, and twenty-second days post-lentectomy apparently correspond to lysosomal activity in the processes of wound healing, iris depigmentation, and lens differentiation which occur during urodele lens regeneration. On the basis of biochemical and histochemical studies as well as observations of morphological changes in the urodele eye as lens regeneration proceeds, it is postulated that there is a significant correlation between these morphological changes and the level and localization of the lysosomal acid hydrolases in the tissues in which the changes occur.  相似文献   

18.
We have previously shown that lens regeneration from the pigmented epithelium of the dorsal iris in the adult newt eye proceeds in two steps after lens removal or intraocular FGF2 injection. The FGF2-dependent proliferation of iris pigmented epithelium and activation of early lens genes that occur over the entire circumference of the iris comprise the first step, while subsequent dorsally confined lens development marks the second step. Here, we investigated the expression of Wnt and Wnt receptor Frizzled genes in lens-regenerating iris tissues. Wnt2b and Frizzled4 were activated only in the dorsal half of the iris in synchrony with the occurrence of the second step, whereas Wnt5a and Frizzled2 were activated in both halves throughout the period of the first and second steps. Cultured explants of the iris-derived pigmented epithelium in the presence of FGF2 underwent dorsal-specific lens development fully recapitulating the in vivo lens regeneration process. Under these conditions, Wnt inhibitors Dkk1, which specifically inhibits the canonical signal pathway, and/or sFRP1 repressed the lens development, while exogenous Wnt3a, which generally activates the canonical pathway like Wnt2b, stimulated lens development from the dorsal iris epithelium and even caused lens development from the ventral iris epithelium, albeit at a reduced rate. Wnt5a did not elicit lens development from the ventral epithelium. These observations indicate that dorsal-specific activation of Wnt2b determines the dorsally limited development of lens from the iris pigmented epithelium.  相似文献   

19.
N-Acetyl-glucosaminidase activity was measured during the first 25 days of limb regeneration. It was found that the enzyme is present in the normal limb. Following amputation a significant drop was obtained at day 3. A significant increase in enzyme activity was found at day 5 followed by a second drop by day 10. For days 12–15 a second peak of enzyme activity was detected, followed by a third drop; by day 25, normal levels of enzyme activity were detected. Histochemical localization of the enzyme in tissue samples showing enzyme activity as detected biochemically (days 5 and 17 of regeneration) gave negative results. However, enzyme activity was found in the incubation medium, indicating that the enzyme is released from the cells. The peaks of enzyme activity coincide with the stages of limb regeneration where a high degree of tissue demolition and cell lysis occurs. The latter are important events in the regeneration process, cell dedifferentiation, and blastema formation.  相似文献   

20.
When a lens is removed from the newt eye, a new lens is regenerated from the pigmented epithelial cells of the dorsal iris, whereas the ventral iris never shows such an ability. It is important to clarify the nature of signaling molecules which act directly on the iris cells to accomplish lens regeneration from the iris and also to gain insight into the mechanism of dorso-ventral difference of the regeneration potential. To examine the effects of exogenous factors, we established an in vitro culture of reaggregates made from dissociated pigmented epithelial cells of dorsal or ventral halves of newt iris. Foci of depigmented cells appeared within the cell reaggregates, regardless of their origins, when the cell reaggregates were cultured with FGF2 or FGF4. In contrast, only the depigmented cells in the dorsal iris cell reaggregates underwent extensive proliferation and developed a lens with the synthesis of lens-specific crystallins, recapitulating the normal lens regeneration. On the other hand, neither FGF8, FGF10, EGF, VEGF, nor IGF promoted lens development from iris cell reaggregates. Consistent with the FGF-specific action, FGFR-specific inhibitor SU5402 suppressed the lens development from the cultured cell reaggregates. These results demonstrated that FGF2 or FGF4 is essential for the in vitro lens regeneration from the pigmented cells of the dorsal iris. In addition, these findings indicated that unequal competence in the dorsal and ventral iris to FGF2/4 contributes to the difference in lens forming ability between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号